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Radars use time-of-flight measurement to infer the range to a distant target from its return’s round-trip
range delay. They typically transmit a high time-bandwidth product waveform and use pulse-compression
reception to simultaneously achieve satisfactory range resolution and range accuracy under a peak
transmitted-power constraint. Despite the many proposals for quantum radar, none have delineated the
ultimate quantum limit on ranging accuracy. We derive that limit through continuous-time quantum
analysis and show that quantum illumination ranging—a quantum pulse-compression radar that exploits
the entanglement between a high time-bandwidth product transmitted signal pulse and and a high time-
bandwidth product retained idler pulse—achieves that limit. We also show that quantum illumination
ranging offers mean-squared range-delay accuracy that can be tens of dB better than that of a classical
pulse-compression radar of the same pulse bandwidth and transmitted energy.
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Introduction.—Classical microwave radars use time-of-
flight measurement to infer the range to a distant target
from its return’s round-trip range delay τ [1–7]. Their
range-delay resolution τres, i.e., the delay separation needed
for reliably distinguishing between two targets based on
their range separation, is inversely proportional to the radar
pulse’s bandwidth Δω. Their ultimate range-delay meas-
urement accuracy for a single target, i.e., the minimum
root-mean-squared (rms) estimation error δτmin for local-
izing a single target, as set by the Cramér-Rao bound
(CRB), decreases as the signal-to-noise ratio (SNR)
increases. A transform-limited transmitted pulse with
duration T and peak power PT has Δω ∼ 2π=T and
provides an SNR satisfying SNR ∝ PTT. For a radar whose
peak power is constrained, these behaviors lead to a conflict
between improving the range-delay resolution and improv-
ing the ultimate range-delay accuracy. Using a high
time-bandwidth product (TΔω ≫ 2π) transmitted pulse,
however, retains the SNR ∝ PTT behavior, but pulse-
compression reception results in τres ∼ 2π=Δω ≪ T
[3,4]. Range-delay resolution and CRB accuracy, however,
are not the whole story for radar ranging. Because range-
delay estimation is a nonlinear problem, there is a minimum
SNR below which range-delay performance is significantly
worse than the CRB [8–14]. Here, the Ziv-Zakai bound [8]

affords a useful lower bound on achievable rms accuracy
for subthreshold SNRs.
With the emergence of quantum information science,

considerable attention is being paid to the notion of
quantum radar [15–18]. Much of this work has addressed
radar operation at optical wavelengths [19–23], where
background noise has low brightness, i.e., ≪ 1 photon
per mode, and very low round-trip radar-to-target-to-radar
propagation loss is often assumed. Our interest is in
microwave radar, where background noise has high bright-
ness, viz., ∼100 s–1000 s photons per mode, and an
unresolved target at range R returns a power that is
inversely proportional to R4, making propagation loss
severe. Despite this regime’s loss and noise, quantum
illumination (QI) [17,24–26] has shown that entanglement
offers a 6 dB advantage over its best classical competitor of
the same transmitted energy in the error-probability expo-
nent for detecting the presence of an unresolved target at a
particular location.
Recently, QI’s hypothesis-testing approach was applied

to the task of determining which of many contiguous
range-delay resolution bins contains a target that is known
to be present in one of them [27]. That first step toward
understanding QI’s ranging performance did not address
QI’s ultimate range-delay accuracy, as set by the quantum
CRB [28–30] at high SNR and the quantum Ziv-Zakai
bound (ZZB) [31] in the subthreshold SNR region. This
Letter will remedy those deficiencies by developing a
continuous-time framework for QI’s entanglement-assisted
range-delay estimation and comparing its predictions to
corresponding results for classical, i.e., coherent-state,
radar.
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Our proposed QI ranging is a quantum pulse-
compression radar that benefits from the entanglement
between a high time-bandwidth product transmitted signal
pulse and a high time-bandwidth product retained idler
pulse. In comparison to a classical pulse-compression radar
of the same bandwidth and transmitted energy, our quan-
tum CRB analyses show that QI’s mean-squared accuracy
above its SNR threshold is 3 dB better than the corre-
sponding above-threshold classical performance. QI’s 6 dB
advantage in error-probability exponent over classical radar
in determining the target’s range-resolution bin [27],
however, provides a 6 dB reduction in its SNR threshold
relative to that of classical radar. Remarkably, this threshold
reduction translates into an entanglement-assisted mean-
squared accuracy that can be tens of dB better than classical
performance at the same SNR.
Quantum description of range-delay estimation.—The

quantum range-delay estimation problem is as follows. The
radar transmits a single spatial-mode field characterized by
a photon-units, positive-frequency field operator:

ÊSðtÞ ¼
Z

dω
2π

ÂSðωÞe−iðω0þωÞt; ð1Þ

where ω0 is the carrier frequency [32]. In both our classical
and quantum pulse-compression radars, this field operator’s
excitation will have duration T, bandwidth Δω satisfying
2π=T ≪ Δω ≪ ω0, and average photon number E ¼R
dthÊ†

SðtÞÊSðtÞi. From an unresolved, nonfluctuating
target at range R, the radar receives a photon-units,
positive-frequency field operator ÊRðtÞ given by

ÊRðtÞ ¼
ffiffiffi
κ

p
eiθRÊSðt − τÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
ÊBðtÞ; ð2Þ

where κ is the round-trip radar-to-target-to-radar trans-
missivity, θR is the phase shift incurred in reflection from
the target, τ ¼ 2R=c, with c being light speed, is the target’s
range delay, and

ÊBðtÞ ¼
Z

dω
2π

ÂBðωÞe−iðωþω0Þt ð3Þ

is the background radiation’s field operator. In keeping with
a microwave radar’s interrogating a distant unresolved
target, we shall assume that the target is known to lie in
the range uncertainty interval R ¼ ½Rmin; Rmax� with
ΔR≡ Rmax − Rmin ≪ ðRmin þ RmaxÞ=2. It then follows
that the range-delay τ will lie in ½τmin; τmax� with τmin ¼
2Rmin=c, τmax ¼ 2Rmax=c, and Δτ≡ τmax − τmin ¼
2ΔR=c. Also, κ will be approximately constant over the
range uncertainty interval and satisfy κ ≪ 1. The back-
ground radiation—at least over ÊSðtÞ’s excitation band-
width—is in a thermal state whose average photon number
per mode is NB=ð1 − κÞ ≈ NB, where

NB ¼ 1=½exp ðℏω0=kBTBÞ − 1� ≫ 1; ð4Þ

with ℏ being the reduced Planck constant, kB the
Boltzmann constant, and TB the radar receiver’s noise
temperature. The range-delay estimation task is to make a
minimum rms error estimate of τ from a measurement made
on fÊRðtÞ∶t ∈ T g, where T includes all times for which
there could be any target return from the range uncertainty
interval.
Before proceeding further, there is an important point to

make about θR and ω0 that is revealed by the frequency
domain version of Eq. (2), viz.,

ÂRðωÞ ¼
ffiffiffi
κ

p
ei½ðω0þωÞτþθR�ÂSðωÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
ÂBðωÞ: ð5Þ

If θR is modeled as uniformly distributed on ½0; 2π�, as is
typically the case, the ω0τ term in Eq. (5) becomes
uninformative and the radar must implement a measure-
ment that is not destroyed by phase randomness. (In
classical radar, this task is accomplished by means of
envelope detection after matched filtering.) On the other
hand, if θR is known, the ensuing range-delay ambiguities
spaced 2π=ω0 apart [4] prevent the ω0τ term in Eq. (5) from
being useful. That said, we shall set θR ¼ 0 and ω0 ¼ 0 in
Eq. (5) in evaluating the quantum CRB and ZZB, recog-
nizing, by convexity, that the results obtained therefrom are
lower bounds on their phase-incoherent (random θR)
counterparts. See Ref. [33] for evidence supporting the
minimal impact, on classical radar, of assuming θR ¼ 0
when ω0 ¼ 0.
Our rms accuracy (δτ) assessments for the classical and

QI pulse-compression radars combine the quantum CRB
[28–30] and the quantum ZZB [31]. Specifically, when
the radar in question has its SNR above its range-delay
estimation’s SNR threshold, we use δτ ≈ δτCRB ¼ 1=

ffiffiffiffiffiffi
F τ

p
[38], where F τ is the Fisher information about τ contained
in fÊRðtÞ∶t ∈ T g [33]:

F τ ¼ lim
dτ→0

8ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ð ffiffiffiffiffi

ρ̂τ
p

ρ̂τþdτ
ffiffiffiffiffi
ρ̂τ

p Þ2�
p

Þ
dτ2

; ð6Þ

where ρ̂u is the state of the classical radar’s received field—
and, for the quantum radar, the joint state of its received and
retained fields—when the range delay is u. Alternatively,
when the radar’s SNR is below threshold, we use
δτ ≈ δτZZB, where

δτZZB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Δτ

0

dτ0τ0
�
1 −

τ0

Δτ

�
Peðτ0Þ

s
; ð7Þ

with Peðτ0Þ being the minimum error probability—from the
likelihood-ratio test for the classical radar [1] and from the
Helstrom limit [28] for the quantum radar—for distinguish-
ing between the equally likely hypotheses H0 ¼ target
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present at range delay τmin andH1 ¼ target present at range
delay τmin þ τ0. As will be discussed below, however, we
will use the quantum radar’s Chernoff bound [27,39,40] in
lieu of the Helstrom limit because the former is easily
obtained whereas the latter is not [33]. We expect this
substitution will have a modest effect on our results because
the quantum Chernoff bound is known to be exponentially
tight in Peðτ0Þ’s SNR dependence.
Classical pulse-compression radar.—Our classical

pulse-compression radar will emit ÊSðtÞ in the coherent
state j ffiffiffi

E
p

sðtÞe−iω0ti, where
sðtÞ ¼ ð2πT2Þ−1=4 exp ð−t2=4T2 þ iΔωt2=2TÞ; ð8Þ

with 2π=T ≪ Δω ≪ ω0. Physically, this is a narrowband
but high time-bandwidth product, chirped-Gaussian pulse
with average photon number E and rms time duration T.
Moreover, because

SðωÞ≡
Z

dtsðtÞe−iωt ≈ exp ð−ω2=4Δω2Þ
ðΔω2=2πÞ1=4 ; ð9Þ

so that
R ðdω=2πÞω2jSðωÞj2 ¼ Δω2, we thus have that Δω

is sðtÞ’s rms bandwidth. The quantum CRB—with θR ¼ 0
and ω0 ¼ 0—for this classical radar’s rms range accuracy
with quantum-optimal reception is [33]

δτCCRB ¼ 1

Δω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κE=ðNB þ 1=2Þp ≈

1

Δω
ffiffiffiffiffiffiffiffiffiffiffiffi
2SNR

p ; ð10Þ

where SNR≡ κE=NB and NB ≫ 1 as is typical for micro-
wave operation.
Interestingly, a semiclassical treatment of a radar using

this chirped-Gaussian pulse transmitter and ideal hetero-
dyne reception results in a “classical” CRB that gives the
same result as Eq. (10) for NB ≫ 1. Moreover, for NB ≫ 1,
both the quantum CRB and the classical CRB for hetero-
dyne reception match well-known classical results [3,4,41–
43] for the high-SNR range-delay accuracy. Furthermore,
convexity implies that no classical-state transmitter can
outperform the best coherent-state radar, and the CRB from
Eq. (10) holds for all pulse shapes with rms bandwidth Δω
[33]. Thus, we conclude that a coherent-state transmitter
with ideal heterodyne reception is the quantum optimum
classical-state radar for above-threshold microwave range-
delay estimation when κ ≪ 1 and NB ≫ 1.
In contrast to the CRB—which bounds the range-delay

accuracy for estimating an unknown, nonrandom τ—the
ZZB is a Bayesian result that assumes τ to be uniformly
distributed on τ ∈ ½τmin; τmax�. Consequently, as SNR → 0,
we have δτZZB that will approach the range-delay distri-
bution’s standard deviation στ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δτ2=12

p
, which is

typically much greater than the radar’s range-delay reso-
lution τres. Using well-known results [33]—and κ ≪ 1;
NB ≫ 1—we find that the classical radar’s likelihood-ratio
test for ideal heterodyne detection results in

Peðτ0Þ ¼ Q½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNRð1 − e−Δω

2τ02=2Þ
q

� ð11Þ

≤ exp½−SNRð1 − e−Δω
2τ02=2Þ=2�=2; ð12Þ

where QðxÞ≡ R∞
x dye−y

2=2=
ffiffiffiffiffiffi
2π

p
, and the upper bound is

both the classical Chernoff bound for ideal heterodyne
reception and the quantum Chernoff bound for the quan-
tum-optimum measurement made on fÊRðtÞ∶t ∈ T g. The
Chernoff bound gives δτCZZB−QCB ∼ στe−SNR=4 at low SNRs,
but at high SNRs we find [33] δτCZZB → δτCCRB for the exact
error probability, whereas δτCZZB−QCB →

ffiffiffi
2

p
δτCCRB. The

latter behavior is not surprising: at high SNRs, Eq. (7) is
dominated by contributions from small values of τ, for
which the Chernoff bound is not sufficiently accurate in
approximating Peðτ0Þ to recover the CRB [33].
Although we have chosen the chirped-Gaussian pulse of

Eq. (8) for analytical convenience, the quantum CRB from
Eq. (10) and the ZZB’s high-SNR and low-SNR asymp-
totes apply to all pulse shapes with rms bandwidthΔω [33].
Quantum pulse-compression radar.—Our quantum

pulse-compression radar will use a continuous-wave,
frequency-degenerate, spontaneous parametric down-
converter to produce signal and idler beams whose
photon-units, positive-frequency field operators, ÊSðtÞ
from Eq. (1), and

ÊIðtÞ ¼
Z

dω
2π

ÂIðωÞe−iðω0−ωÞt ð13Þ

are in a zero-mean jointly Gaussian state characterized by
their nonzero Fourier-domain correlations:

hÂ†
KðωÞÂKðω0Þi ¼ 2πSðnÞðωÞδðω − ω0Þ; ð14Þ

for K ¼ S, I, and

hÂSðωÞÂIðω0Þi ¼ 2πSðpÞðωÞδðω − ω0Þ: ð15Þ

The quantum radar transmits a T-s-long pulse of its signal
beam, where T ≫ 2π=Δω, while retaining the companion
idler pulse for a joint measurement with fÊRðtÞ∶t ∈ T g.
For analytical convenience, we will take signal and

idler’s phase-insensitive (fluorescence) spectrum to be

SðnÞðωÞ=2π ¼ NSe−ω
2=2Δω2

ffiffiffiffiffiffi
2π

p ; ð16Þ

making their average photon number
R
T
0 dthÊ†

SðtÞÊSðtÞi ¼
T
R ðdω=2πÞSðnÞðωÞ ¼ NSΔωT ¼ E and mean-squared

bandwidth T
R ðdω=2πÞω2SðnÞðωÞ=E ¼ Δω2 match that

of our classical pulse-compression radar, and we will take
the signal and idler’s phase-sensitive cross spectrum to be
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SðpÞðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðnÞðωÞðSðnÞðωÞ þ 1Þ

q
; ð17Þ

making their quadratures maximally entangled [17]. Note
that the assumption of Gaussian fluorescence spectra is not
essential for the quantum advantages derived below to
hold [33].
As is well known for QI target detection [17], our

quantum pulse-compression radar’s performance advantage
will come from its phase-sensitive cross spectrum SðpÞðωÞ,
greatly exceeding the classical limit on that cross spectrum
SðnÞðωÞ when NS=

ffiffiffiffiffiffi
2π

p ¼ maxω ½SðnÞðωÞ� ≪ 1. This low-
brightness condition implies that our quantum radar will
need a much longer pulse duration than a high-brightness
classical competitor of the same bandwidth and energy.
The quantum pulse-compression radar’s Fisher informa-

tion is easily evaluated [33], leading—when NS ≪ 1,
κ ≪ 1, and NB ≫ 1—to the range-delay CRB

δτQCRB ¼ 1=2Δω
ffiffiffiffiffiffiffiffiffiffi
SNR

p
¼ δτCCRB=

ffiffiffi
2

p
; ð18Þ

a result that can be shown to be the best high-SNR
performance of all entanglement-assisted radars [33].
When NS ≫ 1, however, the preceding quantum advantage
vanishes, as expected from the previous paragraph, and we
get [33] δτQCRB ¼ δτCCRB.
To find the ZZB for our quantum radar, we will focus on

the NS ≪ 1; κ ≪ 1; NB ≫ 1 regime and use the quantum
Chernoff bound (QCB) for range-bin discrimination that
applies when T ≫ Δτ [27,33], as will be necessary for our
quantum radar to reach its threshold SNR, viz.,

Peðτ0Þ ≤ exp½−2SNRð1 − e−Δω
2τ02=2Þ�=2; ð19Þ

in place of the (challenging to obtain) exact error proba-
bility. At high SNRs, we get δτQZZB−QCB ≈ δτQCRB, whereas at

low SNRs we find [33] δτQZZB−QCB ≈ στe−SNR. Comparing

to the below-threshold classical result δτCZZB−QCB ≈
στe−SNR=4 shows the beneficial effect of QI’s 6 dB higher
error-probability exponent [24,27].
Strictly speaking, using an error-probability upper bound

in an expression that provides a range-delay accuracy lower
bound is no longer guaranteed to provide a lower bound.
However, because δτQZZB-QCB approaches the quantum CRB
at high SNR and converges to στ as SNR → 0, we believe it
to be a good approximation to the δτ of our quantum
radar [33].
Accuracy comparison.—Figure 1 presents an example

that illustrates the range-delay advantages provided by QI’s
entanglement-assisted pulse-compression radar over
classical pulse-compression radar. There, we plot results
for normalized mean-squared range-delay accuracies ver-
sus the radar’s SNR, both in dB. Here we see that the ZZBs
(stars) all show a clear threshold phenomenon, as predicted

from their high-SNR and low-SNR asymptotic results
(dashed lines): δτQCRB ¼ 1=2Δω

ffiffiffiffiffiffiffiffiffiffi
SNR

p
and δτCCRB ¼

1=Δω
ffiffiffiffiffiffiffiffiffiffiffiffi
2SNR

p
at high SNR, and δτQZZB-QCB ¼ στe−SNR

and δτCZZB-QCB ¼ στe−SNR=4 at low SNR. For each radar,
the threshold signal-to-noise ratio, SNRthresh, at which
range-delay accuracy diverges from the CRB can be
obtained by matching its low-SNR and high-SNR
δτZZB-QCB asymptotes. We find that [33]

SNRQ
thresh ¼ SNRC

thresh=4 ¼ fð1=2Δω2σ2τÞ=2; ð20Þ

where x ¼ fðyÞ is the inverse function of y ¼ xe−x. These
thresholds are shown by vertical dashed lines in Fig. 1.
They match well to the numerical results (red stars for the
quantum radar and cyan or blue stars for the classical radar)
found by evaluating Eq. (7). As predicted by Eq. (20), the
quantum radar’s SNR threshold is 6 dB lower than that of
the classical radar, as highlighted in Fig. 1. This 6 dB
advantage from using entanglement has been verified
numerically for a variety of Δτ values [33].
Remarkably, for a Δω=2π ¼ 106 Hz rms-bandwidth

quantum radar interrogating a target located within a ΔR ¼
5 km range uncertainty, operation at SNR ¼ SNRQ

thresh
provides a 28 dB advantage in mean-squared range-delay
accuracy compared to a classical radar of the same
bandwidth and pulse energy. More generally, asymptotic
analyses [33] show that the quantum radar’s mean-squared
accuracy advantage when operating at SNRQ

thresh obeys

ðδτCZZB-QCBÞ2=ðδτQZZB-QCBÞ2 ∼ ðΔωστÞ3=2 ð21Þ

FIG. 1. Normalized mean-squared range-delay accuracies in
dB, 20 log10ðδτ=στÞ, versus SNR in dB. The plots assume
Δω=2π ¼ 106 Hz and ΔR ¼ 5 km. Results are shown, top to
bottom, for δτCZZB-QCB (cyan stars), δτCZZB (blue stars), and
δτCZZB-QCB (red stars). Also plotted, in the corresponding colors,
are their high-SNR and low-SNR asymptotic behaviors, along
with vertical dashed lines showing their SNR thresholds,
SNRC

thresh and SNRQ
thresh, computed from the intersections of each

radar’s high-SNR and low-SNR asymptotic behaviors.
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and thus grows with both increasing bandwidth and range-
delay uncertainty.
Discussion.—Microwave radar is a challenging venue

for exploiting quantum entanglement [44]. In this Letter,
we developed a continuous-time treatment of QI target
ranging and compared its performance to that of a classical
pulse-compression radar. Both use time-of-flight measure-
ments to infer target range, hence both have SNR thresh-
olds below which their range-delay measurement accuracy
is far worse than their CRB limit. Our quantum radar has a
6 dB lower threshold SNR than the classical radar.
Consequently, when the quantum radar operates at its
threshold SNR, its mean-squared range-delay accuracy
can be tens of dB better than that of its classical competitor.
Although we have yet to identify a receiver design for
achieving our quantum radar’s range-delay accuracy ad-
vantage, such a large advantage is a much better prospect
for retaining a significant advantage with a practical, but
suboptimal, receiver than is the case for QI target detection.
Putting aside the task of developing a practical receiver

for QI target ranging, any such system will be subject to the
same difficulties [17,44–46] that preclude QI’s utility for
long-range target detection unless exceedingly long pulse
durations can be employed so that SNR ¼ κMNS=NB
values—where M is the transmitter’s time-bandwidth
product [47]—on the order of 5 to 10 dB can be achieved
for NS ≪ 1, κ ≪ 1, and NB ≫ 1.
To illustrate the trade-off between range-delay quantum

advantage and pulse duration, consider a W-band
(ω0=2π ¼ 100 GHz) radar used to localize a tiny
unmanned aerial system (UAS). W-band radar is both high
precision and robust to degraded visual environments [48];
hence, it is widely applicable to UAS detection [49].
Figure 2 is a contour plot of this radar’s quantum advantage
in mean-squared range-delay accuracy for a ΔR ¼ R=100
range uncertainty when operated at SNRQ

thresh. It assumes an

ideal radar implementation for which κ ¼ ðGT=4πR2Þ×
ðσAR=4πR2Þ, with GT ¼ AR=ð2πc=ω0Þ2 being the radar’s
antenna gain, AR ¼ 1 m2 its antenna area, and σ ¼ 0.01 m2

the UAS’s radar cross section. It also assumes a TB ¼
150 K noise temperature, giving NB ¼ 32. These para-
meters determine the NS needed to reach SNRQ

thresh and
hence the resulting quantum advantage. As seen in Fig. 2, a
0.01 s pulse duration provides a 20 dB quantum advantage
at R ¼ 100 m, but an impractically long 100 s pulse
duration is needed to realize this same advantage at R ¼
1 km because T=R4 must be constant to maintain constant
quantum advantage.
In conclusion, our Letter’s meta lesson is that employing

entanglement may offer an enormous performance advan-
tage despite its being used in an entanglement-breaking
scenario.
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