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The prediction of flow profiles of slowly sheared granular materials is a major geophysical and industrial
challenge. Understanding the role of gravity is particularly important for future planetary exploration in
varying gravitational environments. Using the principle of minimization of energy dissipation, and
combining experiments and variational analysis, we disentangle the contributions of the gravitational
acceleration, confining pressure, and layer thickness on shear strain localization induced by moving fault
boundaries at the bottom of a granular layer. The flow profile is independent of the gravity for geometries
with a free top surface. However, under a confining pressure or if the sheared layer withstands the weight of
the upper layers, increasing gravity promotes the transition from closed shear zones buried in the bulk to
open ones that intersect the top surface. We show that the center position and width of the shear zone and
the axial angular velocity at the top surface follow universal scaling laws when properly scaled by the
gravity, applied pressure, and layer thickness. Our finding that the flow profiles lie on a universal master
curve opens the possibility to predict the quasistatic shear flow of granular materials in varying
gravitational environments.
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Superficial layers of many planets and asteroids are
covered by granular materials that range in size from dust
and sand to gravel and boulder [1]. These layers result from
several processes—e.g., volcanic activity, fragmentation,
and erosion—and extend to variable depths. Various
geological processes occur in near-surface granular layers
of celestial bodies. Particularly, shear localization in slow
granular flows can initiate catastrophic phenomena such as
avalanches, earthquakes, and faulting [2–4]. While the
shear strain often localizes in narrow regions near moving
boundaries [5,6], the shear zone can also be wide, e.g.,
when a shear fracture [7] propagates in the bulk away from
the boundaries and the sides of the fault move past each
other in deep layers—the process that is of particular
importance in geology. By pinning the shear band in the
bottom of Couette geometries far from the cylinder wall,
power-law scalings with the height H of the pile were
discovered for the position and width of the shear zone
when intersecting the top surface [8,9]. Upon increasing H
the shear zone evolves toward the axis of cylinder and
eventually undergoes a transition to a closed shear zone
buried in the bulk [10–13].
Despite intensive studies on how strain is localized in

shear zones [5,6,8–12,14–20], the role of the gravitational

acceleration g on the flow profile has remained largely
unexplored. Varying g has no obvious effect on localized
flow profiles [21,22], but it can influence wide shear zones
[23]. Without a constraining top boundary, one expects that g
does not affect the shear rheology in rigid-particle systems as
it only rescales the pressure gradient [10] (though the stress
state and, thus, the flow profile are influenced by g for soft
particles [24]). Under a confining pressure, the relative
pressure between successive horizontal layers of grains
depends on g, suggesting that g alters the shear flow in this
case. The shear-zone width was shown to differ when
turning on or off g and the external pressure, but the scaling
exponent with H remained intact [23]. Although the
mechanical behavior of granular matter in low gravity has
recently attracted attention [21,22,25–28], it is generally
unclear how various geological processes that occur in near-
surface granular layers of celestial bodies depend on g. It is
crucial to predict the shear flow of granular matter in varying
gravitational environments to understand the evolution of
planetary and asteroid surfaces and for a successful design of
planetary exploration programs and operation of landers,
rovers, and subsurface sampling devices.
We combine numerical analysis and experiments to

explore the role of g in slow shear flows of granular
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materials. We consider a rotating circular fault line at the
bottom of a granular layer under confining pressure Pext
[Fig. 1(a)] and derive the shape of the shear localization
zone from the variational principle of least energy dis-
sipation [10,13]. Increasing g extends the open shear zone
regime to thicker layers and pushes the zone away from the
axis of rotation while slightly decreasing its width. For
closed shear zones, a stronger gravity pulls the shear zone
toward the top surface and increases the extent of it. We
show that the position and width of the shear zone and the
axial angular velocity at the top surface lie on universal
master curves when properly scaled by g, H, and Pext. Our
experiments in a Couette cell geometry validate the
numerical findings.
Shear flow profile from least energy dissipation.—We

consider a shear band initiated by a rough disk with radius
R rotated at angular velocity Ω at the bottom of a
cylindrical granular layer of radius 5R and height H
[Fig. 1(a)]. We assume that our setup is in the quasistatic
regime where inertia effects do not play a role [29] and
changing the driving velocity would just change the time
scale of the experiment. Thus, the effective friction coef-
ficient is shear-rate independent, which allows one to
develop a nonlocal rheology model. We assume the same
effective friction coefficient μ in the bulk and near the
boundaries; thus, the flow profile is independent of μ

(though friction generally plays a major role in stress
transmission in granular materials [29–32]). To describe the
flow profile, we apply the principle of least dissipation
proposed by Onsager for irreversible time-independent
phenomena [33–35]. This variational approach has pre-
dicted the strain localization path in various sheared
granular media accurately [10,13,17,18,36–38].
We require a stationary flow that minimizes the rate of

energy dissipation and matches the boundary constraints.
Denoting the radial coordinate of the shear band at height h
with Rh and taking the cylindrical symmetry of the
geometry into account, the variational problem is traced
back to finding an optimal Rh function that satisfies R0 ¼ R
while the other boundary at h ¼ H is free. In a narrow shear
band approximation [10], the dissipation rate is given by
the shear stress σtn ¼ μ½ρgðH − hÞ þ Pext� times the sliding
velocity between the two sides RhΩ integrated over the
whole shear band. σtn acts against the sliding direction in
the yielding surface, and its magnitude is proportional to μ
times the normal component of the stress pressing the two
sides against each other. Here we assume that the Janssen
effect plays no role and the hydrostatic pressure is appli-
cable. The reason is that the shear band acts as a source of
small continuous vibrations in the whole system due to
collisions and slip events, which causes a slight creep at
contacts [39] and fluidizes the granular bed, inhibiting the

FIG. 1. (a) Sketch of the shear localization zone created by the rotation of a circular region at the bottom of a granular pile.
(b) Dependence of the shear-zone type on g and H (ðH=RÞ ¼ 0.48, 0.55, 0.77, 0.88, and 1.10 from bottom to top and g=gearth ¼ 0.01, 1
and 100 from left to right. Pext ¼ P∘ in all panels. The color identifies the occurrence probability at the given point. The dashed lines
mark the center position of the shear zone. (c) Phase diagram of the transition from open to closed shear zones in the (g, Pext, H) space.
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ability of the particles to keep their original anchoring
position so that they transmit their load to the next particle
below rather than to the side. While the required driving
strength depends on g, after the initiation of shearing the
hydrostatic pressure holds regardless of the magnitude of g.
We present complementary numerical results in the
Supplemental Material [40], proving that a realistic stress
anisotropy negligibly affects the shear-zone properties of
interest. Up to a constant prefactor, the expression to be
minimized can be formulated as

Z
H

0

R2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dRh

dh

�
2

s �
1 −

h
H

þ Pext

ρgH

�
dh ¼ min; ð1Þ

thus, the optimal path is generally determined by g, Pext,H,
and R. The optimization procedure leads to an instanta-
neous narrow shear band. However, the material strength is
practically affected in the vicinity of yield events [41], and
the resulting random structural changes slightly vary the
minimal path in the next instance. In a fluctuating-band
version of the model (Supplemental Material [40] and
[13]), we consider local fluctuations of the path around the
current shear band. While no spatial restriction is imposed
by the variational approach on the shear band path, the
resulting symmetric shear zone (with respect to the axis of
rotation) gains a finite width in the course of such a self-
organized process where the global optimum path itself
modifies the medium in which the optimization is carried
out. The occurrence probability for paths far away from the
shear-zone center is practically negligible due to their high
energy dissipation cost. The method was previously applied
to successfully reproduce the shear-zone width in experi-
ments [13,37]. We obtain the shear profile by ensemble
averaging over all instantaneous shear bands calculated via
the optimization [Eq. (1)] for a given geometry ðH=RÞ and
a set of g and Pext parameters. We checked that the
ensemble size of 105 is large enough to properly explore
the solution space. Note that our minimization approach is
indeed a nonlocal process since the material properties are
instantaneously modified by the global path (The formal-
ism can be represented in terms of a differential equation
similar to Ref. [19]).
Gravity governs the strain localization profile.—We

perform extensive numerical simulations based on the
optimization scheme to clarify the individual roles of H,
g, and Pext on the shear flow profile. g and Pext appear only
in the integrand in Eq. (1), but H influences both the
integrand and the integral limit.
For a free top surface (Pext ¼ 0), we checked that the

flow profile is controlled by ðH=RÞ [8–10]; g plays no role
here as it only rescales the contact forces, which does not
affect the stress tensor (up to a global prefactor scaling). In
contrast, a confining pressure Pext ≠ 0 alters the contact
forces, microstructure, and dilation behavior of the material
[22,24,42–45]. Varying g does not simply rescale the

forces; thus, the stress tensor and shear band path depend
on both Pext and g parameter values. We choose Pext ¼ P∘
(P∘ being a reference pressure level that a pile of glass
beads of size d with height ðH=RÞ ¼ 0.1 applies on the
bottom disk with ðR=dÞ ¼ 100 in the gravitational accel-
eration of the earth gearth) and vary g by several orders of
magnitude at different values of H. As shown in Fig. 1(b),
increasing gravity enhances the open shear zone regime to
higher values of H. It can be also seen that the gravity
pushes the open shear zones away from the axis of rotation
and slightly reduces the extent of the zone. This is in
contrast to the closed zones, where the gravity even
increases the extent of the strain localization zone while
pulling it toward the top surface.
The variational approach favors shear zones with rela-

tively small surfaces weighted by the local pressure and
sliding velocity. To better understand the role of gravity, we
consider two extreme regimes: In a deep layer (H ≫ R),
while a closed shear zone is favorable (as it reduces the total
sliding surface), the preferred location of the shear zone is
at lower pressure, i.e., higher above the forcing boundary.
The competition between these two factors leads to a
domelike structure. The strength of gravity determines the
optimal height: While the shear zone is a flat disk attached
to the bottom plate in the absence of gravity, it changes to a
domelike shape when switching on the gravity. By increas-
ing g, the dome gets sharper as shown in the top row of
Fig. 1(b). In a very shallow layer (H ≪ R), an open shear
zone is favorable as it requires a relatively smaller surface
and benefits from the hydrostatic pressure gradient to
reduce the dissipation. While the path is curved toward
the axis of rotation to reduce the sliding velocity, increasing
g promotes straighter shear zones (i.e., shorter paths)
toward the surface to benefit more from the pressure
gradient. This effect is obvious in the bottom row of
Fig. 1(b). At intermediate H, the interplay of g and Pext
is crucial. A typical interface between open and closed
shear zones is shown in Fig. 1(c). The transition becomes
independent of g and Pext and solely determined by H and
R in two extreme cases: When 1 ≪ ðPext=ρgHÞ, the fabric
is isotropic under the homogeneous pressure [46], and
Eq. (1) reduces to

R
H
0 R2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdRh=dhÞ2

p
dh¼min, which

leads to h ¼ R Rh
R ½dr=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4=A2 − 1

p
Þ� by solving the Euler-

Lagrange equation (A is a constant). The solution can be
expressed in terms of the hypergeometric function 2F1 as

h ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4=A2 − 1

p
2F1ð34 ; 1; 54 ; r4=A2Þ with the boundary

condition rðh ¼ 0Þ ¼ R. For ðPext=ρgHÞ ≪ 1 (as for a
layer with a free surface), the strong pressure gradient leads
to the variational problem

R
H
0 R2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdRh=dhÞ2

p
½1 −

ðh=HÞ�dh ¼ min [10], which is again independent of g
and Pext.
Universal characteristics of shear zones.—We quantify

the center of the shear zone at a given height h as the radial
distance Rh at which the rate of the strain reaches its
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maximum, i.e., ðdϵrθ=drÞjr¼Rh
¼ 0. The width Wh is taken

to be the variance of the shear rate ½dΩhðrÞ=dr� around the
peak at r ¼ Rh. The behavior of the center position RH,
width WH, and axial angular velocity ΩHðr ¼ 0Þ at the top
surface in the (g, H) space is summarized in the
Supplemental Material [40], Fig. S1. The transition from
open to closed shear bands can be identified as, e.g., when
the shear localization region reaches the rotation axis or
by the order parameter m ¼ ½ΩHðr ¼ 0Þ=Ω� (m ∈ ½0; 1�)
[10–13]. m depends on Pext but approaches a saturation
level toward the extreme limits of g; see Supplemental
Material [40], Fig. S1(c).
For any choice of H and Pext, RH monotonically

increases with g within an H-dependent interval (see
Supplemental Material [40], Fig. S2). The growth rate of
RH first increases with g but then decreases. By increasing
Pext, the position of the maximal growth rate of RH shifts to
larger g values. Denoting the scaled gravity and pressure by
g̃≡ ðg=gearthÞ and P̃≡ ðPext=P∘Þ, we introduce a control
parameter λ ¼ g̃=P̃with which we tune the relative strength
of gravity and applied pressure. When plotting RH versus λ
in Fig. 2(a), the data for all g and Pext values lie on a
universal curve at each H, suggesting that to predict the
flow profile as a function of gravity, one can instead vary

inversely the applied pressure. To validate this hypothesis
we carried out shear experiments in a modified Couette cell
with a transparent plate on the top of the granular layer to
apply pressure [see Fig. 2(e) and Supplemental Material
[40] and Ref. [47] ]. Figure 2(a) shows that the exper-
imental data obtained by varying the mass of the top plate at
different values ofH follow the master curves satisfactorily.
We achieve a striking data collapse for all g, Pext, H, and
RH values on a universal curve

1 −
RH

R
¼ fðλÞ

�
H
R

�
5=2

; ð2Þ

where fðλÞ is a logistic function of ln λ [inset of Fig. 2(b)]:

fðλÞ ¼ aþ b

1þ e−ðln λþcÞ ; ð3Þ

with a, b, and c being fit parameters. In a free top surface
system, fðλÞ ≈ 1, and Eq. (2) reduces to a previously
reported empirical scaling relation [8,9]. The shear-zone
width at the top surface follows a scaling law

WH

R
∝ fðλÞ

�
H
R

�
β

; ð4Þ

FIG. 2. (a) Collapse of RH vs λ for all Pext and g values onto a master curve at each H. Crosses denote experimental data. (b) Scaled
shear-zone position via Eq. (2) vs ðH=RÞ. The dashed line indicates equality. Inset: fðλÞ vs ln λ. The solid line shows a fit to Eq. (3) with
a ≃ 2.7, b ≃ −1.7, c ≃ 1.5. (c) WH vs H for various Pext (different colors) and g=gearth ∈ ½10−2; 102� (represented with increasing line
thickness). Crosses are experimental data at ðH=RÞ ≃ 0.11, 0.20 (increasing symbol thickness with Pext). Inset: collapse of the data onto
a master curve using Eq. (4). (d) ΩHðr ¼ 0Þ vs H̃. Same colors and line thicknesses as in panel (c). The white dashed line is the scaling
form given by Eq. (5). Inset: cutoff heightHc vs λ. (e) Sketch of the experimental setup and initially straight lines of colored beads within
the bulk (left), and evolution of the patterns after shearing (right). (f) Rh vs h, for ðH=RÞ ¼ 0.55 and different λ achieved by
ðPext=P∘Þ ¼ 4.0, 2.0, or 0 in experiments (symbols) or g=gearth ¼ 0.25, 0.5, 1 and ðPext=P∘Þ ¼ 1, 1, 0 in simulations (lines). The inset
shows a typical pattern of colored beads within the bulk, obtained experimentally.
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with the growth exponent β ¼ 2=3 [inset of Fig. 2(c)],
indicating that the extent of the shear zone grows faster than
diffusively but slower than linearly with H (as previously
reported in [8,9] and discrete element method simulations
of a confined system in the presence or absence of gravity
[23]). Note that there are growing deviations from the
scaling laws as H approaches the transition threshold to
closed shear zones. While the exponent β remains
unchanged, increasing (decreasing) g (Pext) slightly
decreases WH, in agreement with DEM simulations [23]
and the reported role of gravity on the dispersion of signal
width [48].
In shallow layers, the top surface around the axis rotates

with the driving rate Ω of the bottom disk. As H increases,
ΩHðr ¼ 0Þ gradually reduces during the crossover from
open to closed shear zones. It can be seen from the inset of
Fig. 2(d) that the cutoff height Hc (at which the axial
angular velocity at the top surface ΩHðr ¼ 0Þ starts
decreasing) depends on Pext and g. By subtracting Hc
from the total height, we introduce a scaled excess filling
height H̃ ¼ fðλÞ½ðH −HcÞ=R�. Then, the angular velocity
data remarkably lie on a universal curve

ΩHðr ¼ 0Þ
Ω

¼ exp

�
−
�
H̃
σ

�
α
�

ð5Þ

(with α ≃ 2.8 and σ being the standard deviation), which
extends over several orders of magnitude.
While the scaling relations [Eqs. (2), (4), and (5)] for the

characteristics of the top surface enable one to predict the
influence of g on the surface flow profile, the variational
approach accurately determines the shear zone path inside
the bulk as well. As the final experimental validation of the
numerical approach, we first numerically obtain the center
position of the shear band in the bulk for a givenH and Pext
and several choices of g. To achieve the corresponding
values of λ in experiments, we adjust Pext, i.e., the mass of
the top plate. To be able to visualize the bulk flow profile,
we initially create straight lines of colored beads buried at
several heights in the bulk and observe the created patterns
after shearing by removing the upper layers of grains. The
numerical and experimental results of Rh versus h are
compared in Fig. 2(f); the agreement is excellent, without
any adjustable parameter. We also checked that there
is a very good agreement with the previously reported
numerical and experimental results for free top surface
piles [9,10,49].
In conclusion, we studied the role of gravity on strain

localization in slowly sheared granular materials. The
variational approach for minimization of energy dissipation
is computationally a cheaper technique even compared with
efficient DEM tools for large-scale granular simulations
[50,51] and can be extended to more complex geometries.
We obtained universal scaling laws describing the charac-
teristics of the surface flow profile, which opens the

possibility of predicting the shear flow of granular matter
in varying gravitational environments. Since shear zones
mark the regions where energy dissipation and catastrophic
material failures occur, our results are of particular rel-
evance for science and engineering challenges associated
with planetary and asteroid exploration programs in the
coming years and decades.
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