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Scattering thresholds and their associated spectral square root branch points are ubiquitous in photonics.
In this Letter, we show that the scattering matrix has a simple universal behavior near scattering thresholds.
We use unitarity, reciprocity, and time-reversal symmetry to construct a two-parameter model for a two-port
scattering matrix near a threshold. We demonstrate this universal behavior in three different optical
systems, namely, a photonic crystal slab, a planar dielectric interface, and a junction between metallic
waveguides of different widths.
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Scattering theory is the mathematical framework for
describing physical systems with inputs and outputs.
Originally developed to study the scattering of subatomic
particles in quantum mechanics [1,2] and to design micro-
wave circuits [3], it has more recently become important in
photonics [4–19] describing processes where the inputs and
outputs are optical waves.
The main object in scattering theory is the scattering

matrix (S matrix), which relates the output amplitudes to
the input amplitudes. The S matrix has a rich analytic
structure which has been used to understand very general
behavior of scattering processes. For example, poles of the
S matrix have been used to develop a coupled-mode theory
description of the Fano resonance in optical resonators
[7–9] and in the basic modal description of waveguides
[20], while zeros of the S matrix have been used to design
coherent perfect absorbers [12,14] and reflectionless scat-
tering modes [21].
Besides poles and zeros, another universal analytic

feature of the S matrix is the square root branch point
[1]. This branch point occurs when parameters such as
frequency or angle are varied so that propagating channels
(those with real phase accumulation) transition into evan-
escent channels (having imaginary phase accumulation).
We refer to the transition point as a scattering threshold and
the channels undergoing this transition (having zero phase
accumulation) as threshold channels. For far-field engineer-
ing, the S matrix can be restricted to include propagating
channels only, in which case the size of the S matrix
changes at the threshold. However, for near-field engineer-
ing, the Smatrix needs to be extended to include evanescent
channels, in which case the size of the S matrix remains
constant [22,23].
In photonics, this square root singularity has been

observed in the context of the Rayleigh-Wood anomalies
in the spectra of diffraction gratings and photonic crystals,

associated with the appearance of new diffraction orders.
It is well established that the origin of this square root
behavior is the dispersion relation which determines the
wave vector in terms of other parameters like frequency or
angle [24–27]. There have also been detailed studies of the
modified behavior of resonant poles in the presence of
scattering thresholds [28–33]. In the absence of resonant
poles, the square root singularity has recently been con-
sidered as a possible means of enhanced sensing [18,34].
Despite the theoretical and practical importance of under-
standing scattering thresholds, to the best of our knowledge
there has not been a systematic treatment of the behavior of
the S matrix at isolated scattering thresholds in photonics
which fully incorporates the constraints of unitarity, reci-
procity, and time-reversal symmetry.
In this Letter, we show that the square root branch point

is associated with strong constraints on the entries of the S
matrix, and thus the N-port S matrix has a simple universal
behavior near scattering thresholds. Specifically, we argue
on general grounds that at the scattering threshold, the
threshold channels see a reflection coefficient of −1 and
vanishing transmission coefficients [Eq. (2)]. Specializing
to the two-port case (the N-port case is explained in the
Supplemental Material [35]) and imposing the further
constraints of unitarity, reciprocity, and time-reversal sym-
metry, we obtain a general two-parameter analytic model
for the S matrix near a scattering threshold [Eq. (3)].
As a first example of a system with a scattering threshold,

we consider a photonic crystal slab sitting on top of a perfect
mirror, as shown in Fig. 1(a). We calculate the S matrix in
this system using rigorous coupled wave analysis (RCWA)
[36]. The photonic crystal slab couples two free-space
scattering channels, i ¼ 1, 2, each supporting an incoming
(ai) and outgoing (bi) wave, as shown in Fig. 1(b). As we
approach the critical frequency of the scattering threshold
from above, the wave vectors associated with channel 2
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approach an angle which is parallel to the slab. Below the
critical frequency, channel 2 is evanescent in the z direction
(the z component of the wave vector is imaginary). The z
component of the propagation constant associated with
channel 2 is

β ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
f
c

�
2

−
�
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This is the origin of the threshold square-root branch
point: the threshold critical frequency fc ¼ 0.8c=a for this
diffraction order is defined by

βðf ¼ fcÞ ¼ 0

so that near the critical frequency

β ≈
2π

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fcðf − fcÞ

p
:

The Smatrix is analytic as a function of β, so the square root
branch point in this case comes from this relation between β
and f. In general, we will use the dispersion relations of
the scattering channels to identify the critical values of the
parameters associated with scattering thresholds.

In Fig. 1(c), we plot the magnitude of the reflection
coefficient, jS11j (which relates b1 to a1), as a function of
frequency. We see a flat response below the critical
frequency, since the second channel is evanescent and
all of the power is reflected into the first channel. Above the
critical frequency, there are two propagating channels, and
we see a typical photonic crystal spectrum with Fano
resonances on a smooth background. Near the critical
frequency, we see the square-root spectral kink (indicated
by a red box) which is characteristic of a scattering
threshold (in this case, the Rayleigh-Wood anomaly).
In Fig. 1(d), we show a closer view of the magnitude

of each entry of the two-port S matrix near the critical
frequency. The notable features are the square-root kink at
the threshold, as well as the fact that S12 ¼ 0 and jS22j ¼ 1
at threshold. As we shall see, these features are universal at
scattering thresholds. The numerical data show a good fit
with the two-parameter analytic model which we derive
below [Eq. (3)].
Now that we have seen an example of a scattering

threshold, we can provide a general analytic argument for
the notable features. We consider a scattering system with
N channels, each of which can be propagating, evanescent,
or threshold. The transverse electric and magnetic fields in
the nth channel (1 ≤ n ≤ N) can be expressed in terms of
forward and backward traveling waves as

FIG. 1. A scattering threshold in a photonic crystal slab. (a) The structure is a photonic crystal slab with dielectric constant ϵ ¼ 3.5
sitting on a perfect mirror. The air holes have radius 0.2a, where a is the lattice constant, and the slab thickness is 0.5a. We take the wave
vector to be in the yz plane and the electric field to be pointing in the x direction (transverse electric, TE). (b) The input a1 and zeroth
order output b1 have ky ¼ 0.2ð2π=aÞ. At frequencies f > 0.8c=a, there is a first-order diffraction channel output b2 with
ky ¼ −0.8ð2π=aÞ. We additionally consider the input a2 into this first-order channel so that we can impose reciprocity and time-
reversal symmetry. (c) A portion of the reflection spectrum from channel 1 is shown, with a red box indicating the kink at the scattering
threshold. (d) The magnitudes of the matrix elements of the two-channel S matrix near the threshold are shown. The circles are from
simulations using RCWA [36] while the solid curve is from the two-parameter analytical model [Eq. (3)]. The parameter values for the
model (defined below) are t ¼ 0.438 and g ¼ −1.282. The primary features of the spectrum are the kink as well as the values S12 ¼ 0
and jS22j ¼ 1 at threshold.
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ðEnÞxðzÞ ¼ ane−iβnz þ bneiβnz

ðHnÞyðzÞ ¼
βn
ωμ0

ðane−iβnz − bneiβnzÞ:

Here, βn is the propagation constant (the z component of
the wave vector), ω is the angular frequency, and μ0 is the
vacuum permeability.
We now simplify the notation by evaluating at z ¼ 0 and

dropping the x and y subscripts on the electric and magnetic
fields. We switch to a vector notation to treat all the
channels at once, so E and H are N-component vectors,
and we define the characteristic impedance matrix

Z0 ¼ diag

�
ωμ0
βn

�
:

We can now write more simply

E ¼ aþ b

H ¼ Z−1
0 ða − bÞ:

In addition to the characteristic impedance matrix, we also
need the wave impedance matrix (Z matrix), defined by

E ¼ ZH

(recalling that E and H are vectors containing only trans-
verse field components). Noting also the definition of the S
matrix by the equation b ¼ Sa, it follows that

S ¼ −ð1þ ZZ−1
0 Þ−1ð1 − ZZ−1

0 Þ ð1Þ

where 1 denotes the identity matrix. (See the Supplemental
Material [35] for the derivation.)
We now turn our attention to the behavior exactly at the

scattering threshold. We partition the channels (and there-
fore the matrices S and Z) into three blocks, corresponding
to propagating channels, threshold channels, and evanes-
cent channels, respectively. The propagation constants of
the threshold channels vanish at the critical frequency, so in
our case [transverse electric (TE)] the characteristic imped-
ance of these channels is infinite. (This can be avoided in
metamaterials where μ ¼ 0 [37].) The wave impedance
(including cross-impedance between channels), on the
other hand, generically remains finite at the threshold.
From these properties, we can show that exactly at the
threshold, the S matrix takes the block form

S ¼

0
B@

� 0 �
� −1 �
� 0 �

1
CA ð2Þ

(where −1 denotes the negative identity matrix, while
asterisks denote entries which are not constrained by the

threshold behavior). (See the Supplemental Material [35]
for the derivation, which includes Ref. [38].) In other
words, the transmission from any threshold channel to any
other channel (including other threshold channels) is 0,
while the reflection coefficient from any threshold channel
back to itself is −1.
To understand this behavior physically, we focus on the

case where the input channel is a threshold channel. In our
setup, at the threshold, the diverging characteristic impe-
dance causes the transverse magnetic field to go to zero.
The finite wave impedance therefore requires that the
transverse electric field also vanishes; this requires the
transmission coefficients tmn ¼ Smnðm ≠ nÞ and reflection
coefficients rn ¼ Snn to satisfy, when channel n is exactly
at threshold,

tmn ¼ 0

rn ¼ −1:

A general form of the N-port scattering matrix contain-
ing NðN þ 1Þ=2 free parameters can be derived using
Eq. (1) (see discussion in the Supplemental Material [35]).
For simplicity, here we explicitly derive the general form
for the two-port case. To the lowest order, we can assume
that Z is constant in frequency, so that the analytic behavior
of S comes entirely from the square root in Z0. Using
unitarity, reciprocity, and time-reversal symmetry, we can
show that Z is an imaginary symmetric matrix, which is
therefore determined by three real parameters. (See the
Supplemental Material [35] for the derivation.) The S
matrix is therefore also determined by three real parame-
ters. One of them is not physically relevant, since it
corresponds to a choice of a reference plane for the
propagating channel. In terms of the other two parameters,
which we call t and g, the S matrix has the form

S ¼ 1

1þ ½igþ ðt=2Þ2�δ

×

�
1þ ½ig − ðt=2Þ2�δ tδ

t −1þ ½igþ ðt=2Þ2�δ

�
ð3Þ

where the dimensionless parameter δ is defined as the ratio
of the two propagation constants,

δ ¼ β2=β1:

(see the Supplemental Material [35] for the derivation).
Recall that δ has a square-root frequency dependence near
the threshold. The parameter t is interpreted as the value
of the transmission coefficient t21 at threshold (δ ¼ 0).
The parameter g relates to a choice of reference plane for
the threshold channel. To leading order, g does not affect
jS11j or jS12j, and it only affects jS21j and jS22j below the
threshold, where channel 2 is evanescent and a choice
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of reference plane implements an imaginary gauge trans-
formation [39] (see the Supplemental Material [35] for the
derivation). We emphasize that this local model is only
valid in the immediate vicinity of an isolated scattering
threshold; other spectral features such as the resonances
seen in Fig. 1(c) will decrease the range of validity of the
expansion when the resonant frequency approaches the
threshold frequency [40], but the expansion remains valid
in a sufficiently small neighborhood of the threshold.
Now that we have an analytic model for scattering

thresholds in photonics, we illustrate the universality of
this model by considering two other photonic systems with
scattering thresholds. First, we consider the simplest system
exhibiting threshold behavior, a planar interface between
two different dielectric materials, where the scattering
threshold occurs at the critical angle for total internal
reflection (TIR). In Fig. 2, we show the configuration
and the two scattering channels. We compare our model to
the known Fresnel equations that describe transmission and
reflection at the interface. In this simple system, the
agreement with the model is exact. Accordingly, one can
view the threshold from the Fresnel equations as character-
istic of the local behavior at a general scattering threshold.
For our last example, we consider a closed junction

between two planar metallic waveguides of different
widths, as shown in Fig. 3. In our system, the first and
second waveguides have widths d1 and d2, respectively,
and d1 > d2, so the fundamental TE mode in the first
waveguide is still propagating at the cutoff frequency for
the fundamental TE mode in the second waveguide. If d1 is
chosen small enough, the higher order TE modes in the first

waveguide are not propagating. Because TE modes and
transverse magnetic (TM) modes do not couple in this
system, we can again use our two-port analytic model to
describe the S matrix of the fundamental TE modes in the
two waveguides at a scattering threshold. (See the
Supplemental Material [35] for the details of the analysis
of this system [22,41].) Again, the two-parameter model
predicts the critical behavior at the scattering threshold.
A previously suggested model [26,27] captures only

partially the behavior of the scattering matrix near thresh-
old, but it does not provide an accurate description of the
physical systems we consider here because it does not
satisfy the physical constraint of unitarity (the deviations of
the existing model from the accurate results are elaborated
for all three systems in the Supplemental Material [35]).
Our model which exactly satisfies the generalized unitarity
relations [23] provides, in contrast, an excellent match to
the accurate spectral characteristics of these systems.
When loss is added to the scattering system but the

scattering channels remain lossless, the square-root kink
persists but unitarity is lost (since the scattering process is
lossy). This is what occurs when material loss is added to
the photonic crystal slab. In contrast, when loss is added to
the scattering channels but the bounded system remains
lossless, the square-root kink is smoothed out but the
generalized unitarity of the system remains (since energy is
not lost during the scattering process but rather afterwards
in the channels). This occurs at a dielectric interface when
loss is added to a medium or in the metallic waveguide
junction when loss is added to a waveguide. These two
cases are illustrated in the Supplemental Material [35].
Our theory still applies to both cases, even for high-loss

FIG. 2. A scattering threshold at a dielectric interface. An inset
shows the structure, a planar dielectric interface between glass
(refractive index n ¼ 1.5) and air (refractive index n ¼ 1), as well
as the angle of incidence and the two scattering channels. The
four S matrix elements are plotted as a function of incident angle.
The circles are from the Fresnel equations while the solid green
curves are from the two-parameter analytical model (with t ¼ 2
and g ¼ 0). The scattering threshold occurs at the critical angle
from TIR. The agreement in this case is exact for all angles.

FIG. 3. A scattering threshold at a junction between two
metallic waveguides of different widths. An inset shows the
structure; the first waveguide has width d1 and the second
waveguide has width d2, where d1 > d2. Accordingly, the mode
of the second waveguide has a scattering threshold at the critical
frequency f ¼ 0.5ðc=d2Þ. The blue circles are numerical while
the solid green curves are from the model (with t ¼ 2 and
g ¼ −0.127).
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systems; in the former case, one drops the unitarity
constraints on the Z matrix, and in the latter case, one
retains these constraints and simply inserts loss into the
channel dispersion relations.
To summarize, we showed that the S matrix at a

scattering threshold in photonics has a universal behavior
and can be understood by a simple two-parameter model
[Eq. (3)]. The argument relies on the generic property that
the characteristic impedance has a square-root divergence
while the wave impedance remains finite and analytic at
thresholds. This universal behavior provides insight into
widespread analytic features of the S matrix in photonics.
The square root behavior of the S matrix at threshold may
also be important for sensing applications, and the analytic
model would thus be useful for understanding the con-
straints for engineering these thresholds.
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