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Response properties that are purely intrinsic to physical systems are of paramount importance in physics
research, as they probe fundamental properties of band structures and allow quantitative calculation and
comparison with experiment. For anomalous Hall transport in magnets, an intrinsic effect can appear at the
second order to the applied electric field. We show that this intrinsic second-order anomalous Hall effect is
associated with an intrinsic band geometric property—the dipole moment of Berry-connection polar-
izability (BCP) in momentum space. The effect has scaling relation and symmetry constraints that are
distinct from the previously studied extrinsic contributions. Particularly, in antiferromagnets with PT
symmetry, the intrinsic effect dominates. Combined with first-principles calculations, we demonstrate the
first quantitative evaluation of the effect in the antiferromagnet Mn2Au. We show that the BCP dipole and
the resulting intrinsic second-order conductivity are pronounced around band near degeneracies.
Importantly, the intrinsic response exhibits sensitive dependence on the Néel vector orientation with a
2π periodicity, which offers a new route for electric detection of the magnetic order in PT -invariant
antiferromagnets.
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The anomalous Hall effect (AHE) is a fundamental
transport phenomenon in which a transverse charge current
is generated in response to a longitudinal electric field
without external magnetic fields. The underlying mecha-
nisms are classified into intrinsic and extrinsic ones,
depending on whether or not the mechanism is related
to carrier scattering [1–3]. In the study of linear AHE, a
great success in the past twenty years is the recognition of
the importance of the intrinsic contribution and its con-
nection to a band geometric quantity—the Berry curvature
[4,5]. Recently, the research on AHE has been extended to
the nonlinear regime. Sodemann and Fu [6] proposed an
extrinsic second-order AHE, which involves the dipole of
Berry curvature and is linear in the relaxation time. In fact,
before Ref. [6], an intrinsic second-order AHE has been
predicted by Gao et al. [7], but received less attention.
Particularly, the physical content of this intrinsic effect has
not been fully understood, and furthermore, it has not been
explored in any concrete material yet.
Meanwhile, in the field of spintronics, a recent focus is to

utilize compensated antiferromagnets for device applica-
tions, owing to their advantages like robustness to external

magnetic perturbations, absence of stray fields, and ultrafast
dynamics [8–10]. Especially, the class of PT -symmetric
antiferromagnets have been attracting great interest, as they
permit a fieldlike spin-orbit torque to control the Néel
vectors [11], which has been successfully demonstrated
in materials like CuMnAs [12–15] and Mn2Au [16–18].
However, an outstanding challenge is how to read out the
information, i.e., to detect the Néel vector orientation in
these systems. Conventional magnetic measurements fail
due to the absence of net magnetization [9]; optical
microscopy works [13,19,20] but is difficult to incorporate
for compact devices; and the approach based on anisotropic
magnetoresistance (AMR) effect [9,12] suffers from the
limited reading speed and cannot distinguish a 180° reversal
[21]. Very recently, Shao et al. [22] suggested that for
antiferromagnets with broken PT such as CuMnSb, the
extrinsic second-order AHE could be used to detect the Néel
vector. Unfortunately, this cannot apply for PT -symmetric
antiferromagnets, since the Berry curvature and hence the
effect are suppressed by the PT symmetry.
In this work, we address the above challenge by showing

that the intrinsic second-order AHE offers a powerful tool
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for electrically detecting Néel vectors in PT -symmetric
antiferromagnets. We show that the intrinsic effect has a
quantum origin connected to the dipole moment of the
Berry-connection polarizability (BCP) tensor in momen-
tum space. We clarify the symmetry characters of the effect,
and point out its dominant role in PT -symmetric anti-
ferromagnets, where all Berry curvature related first and
second order Hall responses are forbidden. Combining the
theory with first-principles calculations, we perform the
first quantitative evaluation of the intrinsic second-order
AHE in the paradigmatic PT -symmetric antiferromagnet
Mn2Au. The result is found to be sizable and sensitive to
the Néel vector with a 2π periodicity, indicating a precise
way to map out the Néel vector orientation.
Intrinsic second-order AHE and BCP dipole.—The

intrinsic contribution to the second-order AHE is most
easily derived within the extended semiclassical theory,
which includes field corrections to the band quantities
[7,23–26]. In particular, the Berry connection acquires a
gauge-invariant correction AE by the applied electric field
E, with

AE
a ðkÞ ¼ GabðkÞEb; ð1Þ

where the subscripts a; b; � � � denote Cartesian coordinates
(Einstein summation convention assumed), and Gab is the
BCP tensor [7,27]. For a band with index n, BCP can be
expressed as (we set e ¼ ℏ ¼ 1) [28]

Gn
abðkÞ ¼ 2Re

X
m≠n

Anm
a ðkÞAmn

b ðkÞ
εnðkÞ − εmðkÞ

; ð2Þ

where Anm
a ¼ hunji∂ajumi is the usual interband Berry

connection, juni is the unperturbed eigenstate, ∂a ≡ ∂ka ,
and εn is the unperturbed band energy.
This generates a field-induced Berry curvature ΩE ¼

∇k ×AE, which acts like magnetic field in momentum
space and leads to an anomalous velocity term ∼E ×ΩE for
electrons. This velocity is transverse to the applied E field,
of E2 order, and independent of scattering, so it results in
the intrinsic second-order AHE current jint [7]. By writing
jinta ¼ χintabcEbEc, we have

χintabc ¼
Z
BZ

dk
ð2πÞd ΛabcðkÞ; ð3Þ

with

ΛabcðkÞ ¼ −
X
n

ð∂aGn
bc − ∂bGn

acÞf0; ð4Þ

where BZ stands for the Brillouin zone, d is the dimen-
sionality of the system, and f0 is the equilibrium Fermi-
Dirac distribution. One observes that the effect is indeed
intrinsic, free of scattering effects, and involving only

intrinsic band geometric quantity, and more precisely,
the integrand Λ represents a (antisymmetrized) combina-
tion of the momentum-space dipole moment of BCP over
the occupied states. Via an integration by parts, it is also
clear that the transport is a Fermi surface property, as it
should be.
As its most important character, the intrinsic conduc-

tivity tensor χint here is completely determined by the band
structure, hence can be precisely evaluated from first-
principles calculations. This is in contrast to the extrinsic
second-order response χBCD from Berry-curvature dipole in
Ref. [6], which is linear in the scattering time τ. This
difference also manifests in their different symmetry
properties under time reversal operation: χint is T odd,
whereas χBCD is T even. Thus, the intrinsic contribution
requires broken T , as in magnets, but the extrinsic one does
not. Nevertheless, as mentioned, in PT -symmetric anti-
ferromagnets, χBCD is forbidden, but χint is allowed. And in
cases where both contributions coexist, they can be dis-
tinguished in experiment by their different scaling with τ.
Symmetry property.—We have seen that the intrinsic

second-order conductivity χint is a T -odd rank-3 tensor.
From Eq. (4), it is clear that χintabc is antisymmetric in its first
two indices, which ensures that jinta Ea ¼ 0, i.e., jint is indeed
a Hall current.
For most transport experiments, the setup has a planar

geometry, with the appliedE field and the generated current
both within the plane (denoted as the xy plane). Then the
effect is specified by only two tensor elements, χintxyy and
χintyxx. For E field making an angle θ from the x direction
(usually taken to be certain crystal direction), i.e.,
E ¼ Eðcos θ; sin θÞ, the measured in-plane second-order
intrinsic anomalous Hall current can be expressed as [29]

jð2ÞAH ¼ χAHE2; ð5Þ

with

χAH ¼ χintyxx cos θ − χintxyy sin θ: ð6Þ

The form of χint is also constrained by the point group
symmetry of the system. Given its antisymmetry in the first
two indices, to analyze its symmetry, it is convenient to
transform it to an equivalent rank-2 pseudotensor

Xcd ¼ ϵabcχ
int
abd=2; ð7Þ

where ϵabc is the Levi-Civita symbol. Then, the constraints
from point group symmetries on X can be derived from

X ¼ ηT detðOÞOXO−1; ð8Þ

where O is a point group operation, and the factor ηT ¼ �
is again associated with the character of χint being T odd:
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ηT ¼ −1 for primed operations, i.e., the magnetic sym-
metry operations of the form RT with R a spatial operation;
and ηT ¼ þ1 for nonprimed operations. Here, the presence
absence of ηT ¼ −1 for primed operations is the key
distinction between the intrinsic χint and the extrinsic
χBCD contributions. In Table I, we list and compare the
constraints of common point group operations on the in-
plane χ tensor elements. One finds that several primed
operations, such as PT , Cz

2T , and Sx6T , can completely
suppress χBCD but allow nonvanishing χint.
A model study.—To better understand the features of

BCP dipole and the intrinsic second-order AHE, we first
apply our theory to a four-band Dirac model. Imposing the
PT symmetry represented by PT ¼ −iσyK with K being
the complex conjugation, the most general four-band PT -
symmetric Dirac model has the form [39]

HðkÞ ¼ d0ðkÞ þ d1ðkÞτx þ d2ðkÞτz þ d3ðkÞτyσx
þ d4ðkÞτyσy þ d5ðkÞτyσz; ð9Þ

where the τ’s and σ’s are two sets of Pauli matrices, and the
di’s are real functions of k. To be specific, let us consider
the following Dirac model in two dimensions:

H ¼ wkx þ vxkxτx þ vykyτyσx þ Δτz; ð10Þ
where w, vi’s, and Δ are real parameters. The energy

spectrum is given by ε�ðkÞ ¼ wkx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2xk2x þ v2yk2y þ Δ2

q
,

where each band has a twofold degeneracy due to the PT
symmetry [see Fig. 1(a)]. The last term in Eq. (10) is a mass
term; whenΔ ¼ 0, the bands cross at a fourfold Dirac point
at zero energy. The first term wkx represents a tilt of the
Dirac-cone dispersion.
For this model, the nonvanishing contribution in Eq. (6)

comes from χintxyy. The relevant BCP elements Gyy and Gxy
as well as the BCP dipole Λxyy for the valence bands are
plotted in Figs. 1(b)–1(d). One observes that Gyy and Gxy,
respectively show a monopole and a quadrupole pattern in
momentum space, and the resulting Λxyy exhibits a dipole
pattern along kx. All these quantities are concentrated
around the small-gap region. In Fig. 1(e), we plot χintxyy

as a function of the Fermi energy μ. One can see that the
response is pronounced when μ is close to the small gap
region. It is also noted that the tilt term plays an important
role, as it lowers the symmetry to allow nonvanishing BCP
dipole and χint.
The model study illustrates a general feature, namely,

like Berry curvature, the BCP and its dipole are concen-
trated around small-gap regions in the band structure, and
the resulting nonlinear response is therefore enhanced
when the Fermi level is near such regions.
In the Supplemental Material [29], we present a detailed

study of several other Dirac models, including the type-II
case where the tilt term dominates the dispersion. The
obtained results are very similar and confirm the general
feature discussed above. These results could be helpful for
understanding the effect in PT -symmetric antiferromag-
nets with Dirac points or nodal lines around the Fermi level
[39–41].
Application to Mn2Au.—As its unique advantage, the

intrinsic second-order AHE only depends on the band
structure, thus it can be evaluated in first-principles
calculations to yield quantitative predictions for concrete
materials. Here, we consider Mn2Au, which is a paradig-
matic example of PT -symmetric antiferromagnets and is
under active research in recent years [16–18,42–44].
The lattice structure of Mn2Au is shown in Fig. 2, which

is tetragonal and belongs to the space group I4=mmm

TABLE I. Constraints on the in-plane tensor elements of χint and χBCD from point group symmetries. “✓” (“⨯”) means the element is
symmetry allowed (forbidden). Here, Cz

3;4;6T are not included, as they prohibit all of the listed elements.

P Cz
n Cx

n σz σx Sz4;6 Sx4 Sx6 T PT Cz
2T Cx

2T Cx
3;6T Cx

4T σzT σxT Sz4;6T Sx4T Sx6T

χintyxx ⨯ ⨯ ⨯ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
χintxyy ⨯ ⨯ ✓ ✓ ⨯ ⨯ ✓ ⨯ ⨯ ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ ✓ ✓

χBCDyxx Same as χint above
✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯ ⨯ ⨯

χBCDxyy ✓ ⨯ ⨯ ✓ ✓ ✓ ✓ ⨯ ⨯ ✓ ⨯

(a)

(b) (c) (d)

(e)

FIG. 1. (a) Band structure of the 2D Dirac model. (b)–(d)
Distribution of BCP elements (b) Gyy, (c) Gxy, and (d) BCP
dipole Λxyy in the momentum space for the valence bands of the
model. (e) Calculated intrinsic second-order anomalous Hall
conductivity χintxyy versus the Fermi energy μ. In the calculation,
we take vx ¼ vy ¼ 1 × 106 m=s, w ¼ 0.4vx, and Δ ¼ 40 meV.
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(No. 139). Experiment shows that Mn2Au is a good metal,
with compensated collinear antiferromagnetism and a high
Néel temperature > 1000 K [43]. The ground state mag-
netic configuration is illustrated in Fig. 2. The magnetic
moments are coupled ferromagnetically within each Mn
sheet normal to c, whereas two neighboring sheets are
antiferromagnetically coupled. The Néel vector N shows a
strong in-plane anisotropy and it prefers the h110i direc-
tion. Our first-principles calculations based on the density
functional theory (DFT) confirm these features (calculation
details are presented in the Supplemental Material [29]).
The magnetic configuration of Mn2Au belongs to the

Fm0mm magnetic space group. Importantly, it preserves
PT , which suppresses the extrinsic contribution χBCD to
the second-order response. In addition, for N along the
[110] direction which is chosen to be the x direction
here [see Fig. 2(b)], the preserved symmetries Mx and
MyT dictate that χintxyy vanishes, and only χintyxx is needed
for describing the in-plane intrinsic second-order Hall
transport.
Figure 2(d) shows our calculated band structure for

Mn2Au along with the projection onto atomic orbitals. One
observes that the low-energy states around the Fermi level
are mostly contributed by the Mn-3d orbitals and Au-5p
orbitals. In Fig. 2(e), we plot the BCP dipole Λyxx for the
kz ¼ 0 plane in the BZ. It is an even function with respect to
Mx. Again, we see that pronounced contributions are from

the small-gap region close to the Fermi level, as indicated in
Fig. 2(d). Nevertheless, the small-gap region here has a
complicated extended shape, which cannot be described by
any simple model, so we have to proceed with numerical
calculations. χintyxx is obtained as the integral of the BCP
dipole over the whole BZ. In Fig. 2(f), we further show χintyxx

as a function of the Fermi energy. Without doping, χintyxx has
a value about −1.2 × 10−5 V−1Ω−1. Taking the room-
temperature resistivity ρ ∼ 22 μΩ · cm from experiment
[44], we estimate that for a sample of lateral size
∼100 μm, under a moderate longitudinal current density
of 5 × 106 A=cm2, the induced intrinsic nonlinear Hall
voltage is ∼0.03 μV, which can be detected in experiment.
Figure 2(f) also shows that the effect would be greatly
enhanced by an order of magnitude when the Fermi energy
is shifted towards −0.5 eV, due to the band near degen-
eracy located at that energy [see Fig. 2(d)].
Most importantly, we show that the intrinsic second-

order AHE sensitively depends on the Néel vector direc-
tion, thereby it serves as a powerful tool for detecting N.
For example, we fix the driving field and the measurement
directions to be along x and y, respectively. Then the
response is specified by χintyxx. Figure 3 shows the variation
of χintyxx when the Néel vector rotates in the xy plane (here N
is defined to be along the moments of the purple-colored
sublattice). This variation comes about because the band
structure and hence the BCP dipole depend on the direction
of the Néel vector [29]. Importantly, χintyxx exhibits a 2π
periodicity, meaning that the measurement is capable of
fully mapping out the Néel vector orientation. This is in
contrast to measurement based on linear AMR [12,16],
which has a π periodicity and cannot distinguish a 180°
reversal. Here, the 180° reversal would flip the sign of the
signal, as χintðαÞ ¼ −χintðαþ πÞ where α is the polar angle
of N. In Fig. 3, we also include the curve for χintxyy. In fact,
due to the Cz

4 symmetry, χintxyy is not independent, but related
to χintyxx via χintxyyðαÞ ¼ −χintyxxðα − π=2Þ. Thus, the in-plane

(a) (b)

(c)

(d)

(e)

(f)

FIG. 2. (a) Crystal structure of Mn2Au. Mn atoms with opposite
magnetic moments are marked with two different colors. Black
lines indicate the conventional unit cell. (b) In the ground state,
the Néel vector is along the [110] direction, which is labeled as
the x axis here. (c) The Brillouin zone. (d) Calculated band
structure of antiferromagnetic Mn2Au. The arrow indicates the
small gap region that contributes to the peak in (f). (e) Distribution
of Λyxx in the kz ¼ 0 plane of the BZ, in the unit of Å3 · V−1.
Black lines depict the Fermi surface. (f) Calculated χintyxx versus
the Fermi energy μ.

FIG. 3. (a) Calculated intrinsic second-order conductivity χintyxx

and χintxyy of Mn2Au when the Néel vector (denoted by the moment
orientation of MnA) rotates in the xy plane.
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intrinsic second-order AHE here can be completely speci-
fied by a single tensor element.
Discussion.—We have shown that the intrinsic second-

order AHE offers a new route for probing the BCP dipole,
which is an intriguing band geometric quantity, and for
detecting Néel vectors, which is a challenge in antiferro-
magnetic spintronics. We demonstrate the first-principles
evaluation of the effect for a concrete material. The study
can be naturally extended to other materials such as
MgMnGe, MnPd2, and CuMnAs, also including magnets
without PT , as long as the effect is symmetry allowed.
We focus on the intrinsic effect in this work. Similar to

the linear AHE, there are other extrinsic contributions in the
second-order response, but they typically exhibit different
behaviors. As mentioned, the Berry curvature dipole
induced one (and also the conventional Drude contribution)
can be distinguished from the intrinsic one by their different
scalings with τ [45,46]. It has also been shown that the
extrinsic contributions in the zeroth-order of scattering time
from the so-called coordinate shift and skew scattering
mechanisms are suppressed by the PT symmetry [47].
In practice, the effect can be measured with the standard

Hall bar setup as in Refs. [45,46,48]. For PT -symmetric
antiferromagnets, it has been experimentally demonstrated
that the Néel vector can be rotated by current pulse via the
fieldlike spin-orbit torques [12–18]. Combined with the
detection scheme by the intrinsic second-order AHE
proposed here, it is possible to achieve a full-electric
“write-in” and “read-off” device based on antiferromag-
netic platforms, which is a central goal of the field.
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