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Detecting the orientation of the Néel vector is a major research topic in antiferromagnetic spintronics.
Here we recognize the intrinsic nonlinear Hall effect, which is independent of the relaxation time, as a
prominent contribution to the time-reversal-odd second order conductivity and can be used to detect the
reversal of the Néel vector. In contrast, the Berry-curvature-dipole-induced nonlinear Hall effect depends
linearly on relaxation time and is time-reversal even. We study the intrinsic nonlinear Hall effect in an
antiferromagnetic metal: tetragonal CuMnAs, and show that its nonlinear Hall conductivity can reach the
order of mA=V2. The dependence on the chemical potential of such nonlinear Hall conductivity can be
qualitatively explained by a tilted massive Dirac model. Moreover, we demonstrate its strong temperature
dependence and briefly discuss its competition with the second order Drude conductivity. Finally,
a complete survey of magnetic point groups is presented, providing guidelines for finding more
antiferromagnetic materials with the intrinsic nonlinear Hall effect.
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Introduction.—Electrically detecting the reversal (180°
rotation) of the Néel vector is a crucial task in antiferro-
magnetic spintronics [1,2]. Since the Néel vector and its
reversed image are related by time reversal symmetry, the
time-reversal-odd (T-odd) part of the conductivity tensor
can be utilized to distinguish them. However, many
antiferromagnets respect the combination of spatial and
time reversal symmetry (PT), which forbids the T-odd part
of the linear conductivity tensor. In contrast, for the second
order conductivity tensor, PT symmetry forbids the time-
reversal-even (T-even) part and allows the existence of the
T-odd part. Therefore, second order conductivity is an ideal
quantity to detect the Néel vector reversal in PT-symmetric
antiferromagnets. In fact, one pioneering experiment
detected the Néel vector reversal by measuring the sign
of the second order conductivity in antiferromagnetic
tetragonal CuMnAs [3]. Despite the success of the experi-
ment, the underlying microscopic mechanism of this
second order conductivity has not been fully recognized.
The second order conductivity tensor is defined as the

quadratic current response J to electric field E: Jα ¼P
β;γ σ

αβγEβEγ (α, β, and γ are Cartesian indices). σ can
be separated into an Ohmic-type part and a Hall-type part
[4]. The Ohmic part includes a second-order Drude
conductivity, which is T-odd and quadratically dependent
on the relaxation time τ [5–8]. The Hall part also includes a
T-odd contribution which is independent of the relaxation
time, and is therefore called the intrinsic nonlinear Hall
effect (INHE) [9]. The INHE is different from the more
well-known Berry curvature dipole (BCD) contribution

[10–14]. The latter is proportional to τ and, more impor-
tantly, it is a T-even quantity and is forbidden in PT-
symmetric antiferromagnets. The INHE and its thermal
counterpart, the intrinsic nonlinear Nernst effect, has been
studied in model Hamiltonians such as the loop current
model [15]. However, little is known about the INHE in
realistic materials.
In this Letter, we show that the INHE is a prominent

contribution, and sometimes the dominant contribution, to
the T-odd second order conductivity. Using density func-
tional theory (DFT) calculations, we show that σINH in
antiferromagnetic tetragonal CuMnAs can reach the order
of mA=V2 and is much larger than the Ohmic second order
Drude conductivity. We find a large peak accompanied by a
sign change of σINH as a function of the chemical potential.
This behavior can be explained by a tilted massive Dirac
fermion model in which the INHE is shown to have a
geometric origin arising from the quantum metric dipole.
We find that σINH in tetragonal CuMnAs has a strong
temperature dependence and briefly discuss its competition
with second order Drude conductivity. Finally, a complete
survey of magnetic point groups is presented, providing
guidelines for finding other candidate materials where the
INHE can be observed. Our results thus establish the INHE
as an important transport phenomena in inversion asym-
metric magnetic metals, particularly in the context of
probing the Néel vector reversal in antiferromagnets.
Intrinsic nonlinear Hall effect in CuMnAs.—CuMnAs

usually crystallizes in an orthorhombic phase. However,
with a suitable substrate (e.g., GaAs or GaP), a tetragonal
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phase can be experimentally grown [16], which is the focus
of this work. Figure 1(a) presents the atomic structure and
important symmetries of tetragonal CuMnAs. Each unit
cell contains two Mn planes. The magnetic moment, lying
in the Mn plane, is antiferromagnetically ordered between
the planes. For magnetic moments lying in different
directions within the Mn plane, there is little energy
difference. Therefore, the Néel vector N, defined as the
difference of the magnetic moments between Mn1 and
Mn2 atoms, can be parametrized by the polar angle θ [see
Fig. 1(a)]. For arbitrary θ, PT symmetry is respected.
Electrical manipulation of θ using current pulses has
recently been demonstrated [17,18].
The intrinsic nonlinear Hall conductivity can be

expressed in terms of band quantities as [9,15]

σαβγINH ¼ 2e3
Xϵn≠ϵm
n;m

Re
Z

d3k
ð2πÞ3

vαnA
β
nmA

γ
mn

ϵn − ϵm

∂fðϵnÞ
∂ϵn − ðα ↔ βÞ;

ð1Þ

where v is the band velocity, ϵn is the energy of the nth
Bloch state, Anm ¼ hunji∇kumi is the Berry connection
with juni the periodic part of the nth Bloch state, and e is
the (positive) elementary charge. fðϵ;T; μÞ [T and μ are

omitted in Eq. (1)] is the Fermi-Dirac occupation number
for energy ϵ at temperature T and chemical potential μ. For
now we work at T ¼ 0. We note that σαβγINH is antisymmetric
with respect to α and β, therefore it describes a Hall-type
current [4]. Because of the derivative of f in Eq. (1), the
INHE only depends on quantities around the Fermi surface
and is only relevant for metals. As shown in Fig. 1(b),
CuMnAs is indeed a metal.
For a general orientation (not along high symmetric

directions such as θ ¼ 0) of the Néel vector, the magnetic
point group of tetragonal CuMnAs is 20=m. The allowed
components are σxyyINH ¼ −σyxyINH, σyxxINH ¼ −σxyxINH, σxzzINH ¼
−σzxzINH, and σyzzINH ¼ −σzyzINH. Fourfold rotational symmetry

along the z axis (C4z) demands that σxyyðxzzÞINH ðθÞ ¼
σyxxðyzzÞINH ðθ þ π=2Þ. Therefore, the only independent com-
ponents are σyxxINH and σyzzINH. Here we focus on σ

yxx
INH and defer

the discussion of σyzzINH to the Supplemental Material [19].
We first examine the chemical potential (μ) dependence

of σyxxINH. A sketch of the experimental setup to measure σyxx

is presented in Fig. 2(a). When the Néel vector is along the
x axis (θ ¼ 0), σyxxINH is generally small for hole doping, but
develops a peak and then changes sign rapidly and develops
another peak for electron doping [Fig. 2(b)]. This behavior
signifies a strong variation of Bloch wave function in the
band structure, and will be discussed later. As shown in
Fig. 2(b), σyxxINH is on the order of mA=V2.
Next, we discuss the strong correlation between σINH and

the orientation of the Néel vector [Figs. 2(c)–2(d)]. In most
cases, symmetry arguments can be invoked to explain the
correlation. As mentioned in the introduction, time reversal

FIG. 1. (a) The unit cell of tetragonal CuMnAs (left) and its top
view (right). Mn1 and Mn2 have opposite magnetic moments,
both lying in the x-y plane. Important crystalline symmetries
without magnetic order include inversion (inversion center
between Mn1 and Mn2 on the left panel), fourfold rotation in
the z direction (rotation axis at the Mn atom in the right panel),
and four mirror symmetries (mirror planes indicated by dashed
gray lines in the right panel). The Néel vector N is parametrized
by the polar angle θ in the x-y plane. (b) The band structure of
CuMnAs for θ ¼ 0.

FIG. 2. (a) A sketch of the experimental setup to measure σyxx.
The x and y directions are defined in Fig. 1. (b) σyxxINH for θ ¼ 0 as
a function of the chemical potential. (c)–(d) Intrinsic nonlinear
Hall conductivity σyxxINH [(c)] and σxyyINH [(d)] as a function of
chemical potential (μ) and orientation of the Néel vector θ. μ ¼ 0
is the intrinsic chemical potential.
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symmetry demands σINHðθÞ ¼ −σINHðθ þ πÞ. Additional
constraints on specific components can be derived from
crystalline symmetries. For example, when the Néel vector
is along the x (y) direction, σxyyINH (σyxxINH) is forbidden by
mirror symmetry in the x (y) direction. Therefore, the sign
of σyxxINH can be used to distinguish the Néel vector lying in
�x direction [Fig. 2(c)], and the sign of σxyyINH can be used
to distinguish the Néel vector lying in �y direction
[Fig. 2(d)].
Tilted massive Dirac point model.—To gain further

insight into the behavior of σyxxINH, we analyze the contri-
bution to σyxxINH from different k points at the Fermi surface.
We find that the dominant contribution of the peak comes
from avoided crossings along the Γ-X-Γ and Γ-Y-Γ lines.
Figure 3(a) shows the band structure along the Γ-Y-Γ line,
where two avoided crossings can be observed. These
avoided crossings are common on these high symmetry
lines since the little groups on these lines have only one
allowed representation.
These avoided crossings can be qualitatively modeled by

tilted massive Dirac points. Specifically, we introduce the
following Hamiltonian:

HDirac ¼ kxτ1σ0þkyðτ2σ2− tτ0σ0Þþkzτ3σ0þmτ2σ3; ð2Þ

where τ and σ are two sets of Pauli matrices, t is a parameter
controlling the tilt of the Dirac point, and m controls the
gap.HDirac respects the PT symmetry, which is represented

by −iσ2K, with K the complex conjugate. Therefore, every
band is doubly degenerate.
σINH is expected to have a large value if the chemical

potential is near the band edge. As the chemical potential
approaches the band edge, the carrier density decreases.
However, the Bloch function is rapidly changing, giving
rise to a large Berry connection [cf. Eq. (1)]. Because of
such competition, σINH is zero when the chemical potential
is right at the band edge and rapidly develops a peak before
decreasing as the chemical potential moves away from the
band edge. Indeed, two peaks with opposite signs can
be found in σyxxINH as a function of chemical potential
[Fig. 3(b)], mimicking the sign change in Fig. 2(c). The
tilt of the Dirac point is essential for the INHE: without the
tilt in the y direction, this model has inversion symmetry,
which forbids all components of second order conductivity.
This calculation qualitatively explains σyxxINH in CuMnAs and
shows that a large INHE should be generally expected for
materials with similar band structures.
Using HDirac, we find that σINH has a geometric origin as

it is related to the quantum metric dipole. We use νi to label
different bands, with ν ¼ 1, 2 for different sets of bands and
i ¼ 1, 2 for the PT-related degenerate pair. Then Eq. (1)
becomes [19]

σαβγINH ¼ 2e3
X
ν

Z
d3k
ð2πÞ3

vανg
βγ
ν

ϵν − ϵν̄

∂fðϵνÞ
∂ϵν − ðα ↔ βÞ; ð3Þ

with ν̄ ≠ ν. The quantum metric tensor gαβν measures the
distance between neighbouring Bloch states, and is defined
as gαβν ¼ P

ij Re½Aα
νi;ν̄jA

β
ν̄j;νi�, with ν̄ ≠ ν. vανg

αβ
ν can be

regarded as the quantum metric tensor dipole. For σyxxINH,
the two relevant quantummetric dipoles are vyνgxxν and vxνg

yx
ν ,

which are plotted for the lower band in Figs. 3(c),3(d).
σyxxINH is determined by the difference between these two
dipoles, and hence nonzero as observed from the figure.
In some antiferromagnets, massless Dirac points can also

be realized with certain crystalline symmetries [26–28]. For
massless Dirac points withm → 0 in Eq. (2), the expression
of σINH [Eq. (1)] diverges when the chemical potential lies
exactly at the Dirac point. Disorder is the most likely source
that will regularize the behavior of second order conduc-
tivity for band touchings, and further theoretical inves-
tigation is needed.
Temperature dependence.—By multiplying Eq. (1) withR
dλδðϵn − λÞ, the INHE at finite temperatures can be

expressed as a weighted integration of the INHE at
zero temperature around the chemical potential μ as
σINHðT; μÞ ¼

R
dλσINHðT ¼ 0; λÞ½−∂fðλ;T; μÞ=∂λ�. Finite

temperature modifies σINH in two ways: T directly enters
the Fermi-Dirac distribution and μ has a small dependence
on temperature.
Assuming finite electron density, we calculate the

dependence of chemical potential on T. μ decreases

FIG. 3. (a) The band structure of tetragonal CuMnAs along the
Γ-Y-Γ line, which contains two avoided crossings. (b) The
intrinsic nonlinear Hall conductivity of a tilted massive Dirac
model. (c) and (d) The quantum metric tensor dipole at the kz ¼ 0
plane for the lower band. ℏ is the reduced Planck constant.
Parameters: t ¼ 0.8 eV=Å, m ¼ 5 meV.
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quadratically with respect to T, as expected from the
Sommerfeld expansion. At room temperature, μ drops by
5 meV. Figure 4 shows the behavior of σINH as a function of
T, where both σyxxINH and σyzzINH have a strong dependence on
temperature. Especially, σyxxINH receives an order of magni-
tude enhancement near room temperature. We find that this
drastic change comes from the broadening of
−∂fðλ;T; μÞ=∂λ, which can take advantage of the large
INHE away from the intrinsic chemical potential; the
change of μ plays a negligible role in the temperature
dependence of σINH.
Second order Drude conductivity.—σINH is not the only

member of T-odd second order conductivity. Especially,
the Drude conductivity can also be generalized to second
order as [5–8]

σαβγDrude ¼ −
e3τ2

ℏ3

X
n

Z
d3k
ð2πÞ3 ð∂kα∂kβ∂kγ ϵnÞfðϵnÞ: ð4Þ

σαβγDrude is also a Fermi surface property, because an inte-
gration by parts can bring the k derivative to fðϵnÞ. In
contrast to the INHE, σαβγDrude only depends on the band
dispersion and is symmetric with respect to the permutation
of all its Cartesian indices. Since σDrude is proportional to
τ2, it also requires time reversal symmetry breaking and is
allowed by PT symmetry. In moderately conducting
samples, σINH is expected to dominate over σDrude. Our
estimation indeed shows that σDrude is only a fraction of
σINH for tetragonal CuMnAs at room temperature at the
intrinsic Fermi energy [19].
Magnetic point groups for INHE observation.—

Tetragonal CuMnAs is only one example where the
INHE is prominent. To find other materials candidates,
symmetry guidelines are needed. Symmetry groups that
forbid σBCD but not σINH can be found based on the fact that
they transform oppositely under time reversal operation.
σDrude can be distinguished from σINH and σBCD by noticing
σDrude transforms as a symmetric rank-3 tensor while both

σBCD and σINH transform as rank-2 pseudo-tensors under
point-group operations. For example, C4z constrains sec-
ond order conductivity as σxyz ¼ −σyxz, which is compat-
ible with σINH and σBCD but not σDrude.
Table I presents a classification of magnetic point groups

according to the existence or absence of the INHE, second
order Drude conductivity, and BCD contribution. There are
indeed three magnetic point groups where the INHE is
allowed but second order Drude conductivity and BCD
contribution are forbidden (first row of Table I). For the
three groups, the allowed σINH components are of the type
σxyzINH. More magnetic point groups can be included if we
allow for the existence of second order Drude conductivity.
16 magnetic point groups belong to this class (fourth row of
Table I), which includes 2

0
=m, the magnetic point group of

tetragonal CuMnAs. Out of all 122 magnetic point groups,
53 allows INHE (Table I). Some of the groups allow both
INHE and BCD contribution, enabling the comparison
between these two contributions.
There are also magnetic point groups that allow BCD

contribution but forbid INHE (third and sixth row of
Table I), most of which contain time reversal symmetry.
It is worth noting that some antiferromagnetic materials
actually belong to these magnetic point groups. For
example, antiferromagnetic cubic CuMnSb breaks the
inversion symmetry but respects the combination of time
reversal and translation symmetry, and the corresponding

FIG. 4. The temperature dependence of intrinsic nonlinear Hall
conductivity in tetragonal CuMnAs. Inset: temperature depend-
ence of the chemical potential calculated with the assumption of
constant electron density.

TABLE I. Magnetic point groups classified by the existence or
absence of INHE, second order Drude conductivity and BCD-
induced NHE. For a second order conductivity tensor σαβγ, only
the β ↔ γ permutation symmetric part contributes to the current.
Therefore, in Table I, we have an extra constraint that such
symmetric part does not vanish.

Magnetic point groups INHE Drude BCD

4=m
0
m

0
m

0
, −60

m
0
2, 6=m

0
m

0
m

0
✓ ✗ ✗

−6, 60
=m, −6m2, −6m0

2
0
, 6

0
=mmm

0
, 23,

m
0 − 3

0
, 4

0
32

0
, −43m, m

0 − 3
0
m

✗ ✓ ✗

11
0
, 21

0
, m1

0
, 2221

0
, mm21

0
, 41

0
, −410

,
4221

0
, 4mm1

0
, −42m1

0
, 31

0
, 321

0
,

3m1
0
, 61

0
, 6221

0
, 6mm1

0

✗ ✗ ✓
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, 2

0
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0
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0
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0
m

0
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0
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0
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✓ ✓ ✗
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0
m

0
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0
, 622, 6m

0
m

0
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magnetic point group will have time reversal as a symmetry
element. As a result, both the INHE and the second order
Drude contribution are forbidden, but BCD contribution is
allowed and can be used to detect the 90° (but not 180°)
reorientation of the Néel vector [29].
Discussion and summary.—In a recent experiment on

tetragonal CuMnAs, the second order conductivity has
been measured [3]. While the dependence of the conduc-
tivity on the rotation angle of the Néel vector agrees with
our symmetry analysis, the experimental value is at least 1
order of magnitude smaller than our calculation. Several
factors could play a role here, including the highly sensitive
doping and temperature dependence of the INHE and the
existence of antiferromagnetic domains [30–32]. More
investigations are needed for a quantitative comparison
between our theory and the experiment.
Beyond isotropic relaxation approximation, skew scat-

tering and side jump arising from disorder effects also
contribute to the second-order conductivity, but INHE
remains the only contribution that is independent of the
relaxation time. Extensive efforts [33–39] have been put
into disorder-induced NHE in time reversal symmetric
systems. The behavior of these contributions in magnetic
systems and their role in possible spintronics applications
remains to be explored.
In summary, we have shown that the INHE leads to a

dominant contribution to the second order conductivity in
tetragonal CuMnAs. More importantly, we find that the
INHE can not only reflect the microscopic geometric
properties of Bloch electrons, but also respond sensitively
to the orientation of the Néel vector, providing a promising
way to detect the reversal of the Néel vector. Our symmetry
analysis shows that the INHE is widely available and hence
should be recognized as a fundamental transport phenome-
non in antiferromagnetic spintronics.
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