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We theoretically predict the formation of two-photon bound states in a two-dimensional waveguide
network hosting a lattice of two-level atoms. The properties of these bound pairs and the exclusive domains
of the parameter space where they emerge due to the interplay between the on-site photon blockade and
peculiar shape of polariton dispersion resulting from the long-range radiative couplings between the qubits
are investigated in detail. In addition, we analyze the effect of the finite-size system on localization
characteristics of these excitations.
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Introduction.—The recent development of nanotechnol-
ogy resulted in the appearance of unprecedented platforms
for many-body quantum electrodynamics consisting of
quantum emitters coupled to propagating photons in wave-
guides [1–4]. Particular realizations of such waveguide
quantum electrodynamics (WQED) systems include struc-
tures based on artificial arrays of cold atoms [5,6], super-
conducting qubits [7,8], quantum dots [9], and solid-state
vacancy defects [10]. The exquisiteness of WQED systems
is that they demonstrate an interplay of strong light-matter
interaction, chirality, and long-range radiative couplings
between quantum emitters arising from the exchange of the
propagating photons. The combination of these features
gives rise to a plethora of fascinating physical phenomena,
including collective super-radiance and subradiance
[11–18], the emergence of unconventional topological
phases [19,20], and quantum chaos [21], and promotes
insightful developments for emergent quantum technologies.
Long-range coherent photonic propagation in a wave-

guide couples all emitters together and leads to the
formation of collective polaritonic excitations [4]. Since
a given emitter can be excited only by a single photon, such
structure represents an example of a strongly correlated
system [22]. One of its most compelling properties is the
possibility of the formation of unconventional multiphoton
bound states, attracting the growing interest of theoretical
researchers [16,23–26]. To date, most of the efforts have
been dedicated to the consideration of one-dimensional
(1D) setups since they were the only ones accessible
experimentally. However, very recently a two-dimensional
(2D) network of waveguide-coupled array of transmon
qubits was realized [27], which makes relevant the task
of the proper theoretical description of a strongly correla-
ted WQED system in higher dimensions. It should be
noted that, while the dynamics of single qubits [28] and
qubit arrays [29] in two-dimensional photonic reservoirs
has been considered previously, the existence of the

multiphoton bound states in 2D setups remains an open
question. Moreover, this is totally unclear what are their
localization characteristics of these bound states in case of
their existence.
In this Letter, we explore the formation of the bound two-

polariton states in the 2DWQED setup shown in Fig. 1. We
show that the bound states indeed exist inside the band gap
for the scattering states and establish their spatial profiles.
We also demonstrate the characteristics of these polariton
pairs in finite-size systems, which can be detected in
scattering experiments.
Two-particle Hamiltonian.—We consider the system

schematically shown in Fig. 1. It consists of an N × N
square lattice of qubits located at the nodes of a network
composed of a set of horizontal and vertical identical one-
dimensional waveguides in the xy plane. Each qubit,
described as a dipole with resonant frequency ω0 between
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FIG. 1. Sketch of the considered setup consisting of a square
lattice of regularly spaced qubits placed over a two-dimensional
network of waveguides. The qubits, two-level atoms with
resonant frequency ω0 between ground jgi and excited jei states,
couple with identical waveguides and display the equivalent
emission decay rate Γ0 in both the x and y directions. The
nonradiative emission decay rate Γnr addresses the losses from the
scattered photons to the vacuum.
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ground jgi and excited jei states, couples with a pair of
waveguides that support propagating light modes with
linear dispersion with velocity v. Waveguide photonic
modes can be integrated out in the Markovian regime
[11,13,25]. We assume equal probability of a qubit decay
into each of the two waveguides, and the corresponding 2D
Hamiltonian is given by

H2D
eff ¼ H1D

eff ⊗ I þ I ⊗ H1D
eff ; ð1Þ

where H1D
eff is the effective 1D Hamiltonian that describes

each single waveguide array. For each waveguide, the
Hamiltonian describes an open quantum system where the
coherent exchange of photons enables an infinite-range
qubit-qubit interaction:

H1D
eff ¼

XN
m;n¼1

Hmnb
†
mbn þ

χ

2

XN
m¼1

b†mb
†
mbmbm ð2Þ

with Hmn ¼ ðω0 − iΓnrÞδmn − iΓ0eiφjm−nj, where Γ0 and
Γnr respectively stand for the radiative and nonradiative
decay rate of a single qubit, φ ¼ q0d represents the phase
acquired by excitations with wave vector q0 ¼ ω0=v when
traveling between two qubits spaced by d, the annihilation
operators bm account for the bosonized excitations of the
qubits, and χ stems from the effective on-site photon-
photon repulsion.
The Eq. (2) Hamiltonian effectively describes the coherent

and dissipative collective interaction of the guided modes
through iΓ0eiφjm−nj and also the inherent losses stemming
from photon emission to the free space, which is modulated
by the nonradiative decay rate Γnr. In particular, the wave-
guide supports guided modes that hardly decay into free
space (Γnr=Γ0 ≪ 1) for small array periods d < λ0=2
(φ < π), where λ0 ¼ 2πc=ω0 is the atomic wavelength.
At the current level of technology, this high level of the
qubit-waveguide coupling is achieved in the systems based
on superconducting qubits [8,30]. At the same time, the
considered geometry would require a multilayer circuit since
the perpendicular waveguides ought to be isolated from each
other and be coupled only via the common qubits to suppress
the cross talks. Fabrication of the three-level superconduct-
ing circuit is a challenging task at the moment, even though
the first demonstrations of the multilayer superconducting
quantum circuits have recently appeared [31].
As single two-level atoms are prevented from being

excited by two identical photons at the same time due to the
Pauli exclusion principle, the system lies on the so-called
hard-core limit (χ → ∞) [11,21,25], where the occupation
of each qubit, restricted to either 0 or 1, leads to a picture
where the light-matter excitations (polaritons) effectively
exhibit fermionic behavior [32].
To analyze the nature of two-particle excitations of

the 2D lattice, we need to solve the corresponding linear
eigenvalue problem written as (see the Supplemental
Material [33] for the details):

2εψ ij;mn ¼ Hilψ lj;mn þHjlψ il;mn þHmlψ ij;ln

þHnlψ ij;ml − 2δjnHilψ lj;in − 2δimHjlψ il;mj;

ð3Þ

where ψ ij;mn denotes the probability amplitude associated
with the polariton pair, in which i, j ðm; nÞ indicates the
position of first (second) polariton. The indices i, m
correspond to the x coordinates’ positions, j, n to the y
coordinates’.
For an infinite periodic lattice, the polariton pair is

characterized by the center of mass wave vector K ¼
Kxêi þ Kyêj so that two-particle amplitudes can be
written as

ψ ij;mn ¼ eiKxðiþmÞ=2eiKyðjþnÞ=2Φi−m;j−n; ð4Þ

with the wave function of the relative motion Φ0;0 ¼ 0 and
Φi−m;j−n ¼ Φm−i;j−n. Substituting Eq. (4) into Eq. (3) and
introducing the relative distances dx ¼ i −m and
dy ¼ j − n, we find the system of equations characterizing
the relative motion of a polariton pair, which is given by

εKΦdx;dy ¼
X∞
l¼−∞

ðHl;dxΦl;dy þHl;dyΦdx;lÞ; ð5Þ

where Hl;dλ ¼ −iΓ0 cos fKλ½ðdλ − lÞ=2�geiφjdλ−lj for λ ¼ x,
y. Solutions of Eq. (5) describe both the scattering states
corresponding to the continuous part of the spectrum and,
under specific conditions, the formation of bound pairs.
In order to obtain the scattering state dispersion relation,

we move from the center of mass position basis to the
relative motion wave vector ð−π < qx; qy ≤ πÞ basis by
performing a 2D cosine Fourier transform in Eq. (5). As a
result, the system dispersion relation equation is given by

2εqx;qy ¼ Γ0

�
sinφ

cos k1;x − cosφ
þ sinφ
cos k2;x − cosφ

�

þ Γ0

�
sinφ

cos k1;y − cosφ
þ sinφ
cos k2;y − cosφ

�
: ð6Þ

The total energy of a pair 2εqx;qy is represented as a sum of
the energies of noninteracting polaritons with wave vectors
k1ð2Þ;xðyÞ ¼ ðqxðyÞ � KxðyÞÞ=2. Its shape is determined by the
phase φ and the center of mass wave vector K, and it is
shown in Fig. 2(a) for φ ¼ 3π=4, Kx ¼ π, and Ky ¼ 0.
The impossibility of double occupation in a single qubit

due to the on-site repulsion (χ → ∞) seems to suppress any
possibility of observing bound state pairs. Nonetheless, the
lattice has an infinite-range radiative coupling so that the
polariton-polariton correlation, stemming from the on-site
repulsion, is preserved all along the lattice. This is essential
to the formation of bound states with repulsive interactions
perceived by the negative effective mass regions in the
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dispersion relation shown in Figs. 2(a) and 2(b). The
different sign effective masses of polaritons at the center
and the edge of the Brillouin zone allows for the formation
of the in-gap bound two-polariton states with energies lying
in the band gap even for the case of repulsive interactions.
The creation of these finite-energy bound states by strong
repulsive interaction has already been observed in Bose-
Hubbard models in optical lattices [34].
As bound states arise as discrete in-gap states, the energy

gap in the dispersion relation is the main characteristic that
allows the formation of bound states. However, the exist-
ence of a gap is not guaranteed for any arbitrary values of φ
andK. Figures 2(c) and 2(d) show the domains where two-
polariton pairs can be observed by revealing the gap size Δ
in the dispersion relation. In Fig. 2(c), obtained for Kx ¼ π,
one can notice that bound states cannot be observed in the
range of φ ∈ ½0; π=2� but arise for the parameter combi-
nation lying inside the cone-shaped domain. Figure 2(d)
maps Δ for values of the center of mass wave vectorK and
fixed φ ¼ 3π=4. The dispersion relation profiles where the
energy gap is absent are shown in the Supplemental

Material [33]. Given the complexity of Eq. (5), we fix
the wave vectors Kx ¼ π and Ky ¼ 0 henceforth to achieve
analytical expressions for the bound state energy and its
corresponding wave functions.
Two-polariton bound states.—To obtain the bound state

energy εb, we assume that the condition for Φ0;0 ¼ 0 is due
to a scattering potential v̂ ¼ ε0jΦ0;0ihΦ0;0j with ε0 → þ∞
applied to the unperturbed Hamiltonian characterizing
nearly free polariton propagation with dispersion εqx;qy .
Within the Green’s function formalism [35], the bound
states correspond to the poles of the transfer matrix
T ¼ v̂ðÎ − Ĝ0ðdx; dyÞv̂Þ−1. Hence, at the system origin,
where the infinite scattering potential is present, the
condition for bound states is given by Ĝ0ð0; 0Þ ¼ 0, i.e.,

G0ð0; 0Þ ¼
Z

π

−π

Z
π

−π

dqxdqy
εb − εqx;qy

¼ 0: ð7Þ

The integral in Eq. (7) can be taken analytically but results
in a cumbersome expression involving elliptic integrals of
the second and third kind. We therefore resort to the
numerical solution. However, an approximate solution
can be obtained within certain approximations.
Namely, we first note that the bound state energy should

lie in the band gap region, i.e., cotφ < εb < − tanφ for
φ ∈ ½π=2; π�. Then, we can notice from Fig. 2(a) that
dispersion along qy is weak. We thus can use the fact
that εqx;qy ¼ εðqxÞ þ ε0ðqyÞ and substitute average value

of ε0ðqyÞ, hε0ðqyÞi ¼ ð2πÞ−1 R dqyε0ðqyÞ in Eq. (7). This
would allow us to obtain an approximate expression for the
bound energy for Kx ¼ π, Ky ¼ 0,

εb ≈ 2Γ0 cotð2φÞ þ Γ0arctanh½cotðφ=2Þ� ð8Þ

as is shown by the solid line in Fig. 2(e). As can be seen,
this approximation is very close to one given by numerical
solution.
The bound polariton pair wave functions are obtained as

Φdx;dy ¼ Γ0

Z
π

−π

Z
π

−π
dqxdqy

cos ðqxdx þ qydyÞ
εb − εqx;qy

; ð9Þ

with discrete values of relative distances dx; dy ¼
f0; 1; 2;…g, except for Φ0;0 ¼ 0. The solution details
can be found in the Supplemental Material [33]. The shape
of the entire ensemble of solutions is presented in Fig. 2(f)
for arbitrary values of dx and dy. We can see that the profile
has crosslike structure with greater localization along
x axis (Kx ¼ π) than along y axis (Ky ¼ 0). It should be
noted that the interaction entangles x and y motion of the
qubit pair. This can be demonstrated if we introduce
the squared displacements along the two axes Δx;y ¼
d2x;y − hΦjdx;yjΦi2. The correlation between the two axes

FIG. 2. (a) Polariton dispersion of the two-dimensional lattice
for center of mass wave vectors Kx ¼ π and Ky ¼ 0. (b) 1D slice
of the dispersion relation at Ky ¼ π considering isotropic polar-
iton wave vectors qx ¼ qy ¼ π. The black dotted lines show the
dispersion of light in pristine waveguides. (c),(d) The size of the
energy gap in the polariton dispersion for Kx ¼ π and φ ¼ 3π=4,
respectively. The vertical dashed line in panel (c) highlights the
gap opening at φ ¼ π=2. (e) Exact (solid red line) and analytical
(black dashed line) bound state energy, where the blue and green
dashed curves illustrate the lowest and highest energy values of
the upper and lower polariton branches, respectively. (f) Polariton
spatial distribution jΦdx;dy j2 (rescaled by 0.2). The polariton
phase is set at φ ¼ 3π=4 in panels (a), (c), (e), and (f).
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then can be computed as Cxy ¼ hΔxΔyi=½hΔxihΔyi� − 1.
We have computed the correlation numerically yielding the
value Cxy ≈ −0.15, which confirms the emergence of the
interaction induced correlation between the x and y axes.
Generally, the eigenstates of WQED structures are

classified by their collective decay ratio Γ ¼ −Imε in
comparison with the single qubit decay rate Γ0, so that
Γ ∼ NΓ0 correspond to superradiant states, Γ ∼ Γ0 corre-
spond to bright states, and Γ ≪ Γ0 correspond to subradiant
states. Recently, new classes of eigenstates that emerge
exclusively in multiparticle excitation regimes, such as
twilight [11], chaotic [21], and bound states [16,23], were
theoretically discovered. In contrast with infinite lattices
where the polariton pairs are indeed bound states with an
infinite lifetime in a qubit state, the finite lattice exhibits
highly localized photon pairs with a finite lifetime that only
become bound states when the periodic lattice limit is met.
As experimental setups achieve a limited amount of qubits,
it is relevant to explore finite systems and understand
whether the highly correlated polariton pairs are the most
subradiant states of the system and what the profiles of their
spatial distribution are.
This class of highly correlated polariton pairs is iden-

tified by its degree of localization L based on the mode
volume in optical cavities [36] and defined as

L ¼
P

m;nΨ2
m;n

ðPm;nΨm;nÞ2
; ð10Þ

with

Ψm;n ¼
1

N2

X
i;j

ðjψ i;j;iþn;jþmj2 þ jψ i;j;iþn;j−mj2

þ jψ i;j;i−n;jþmj2 þ jψ i;j;i−n;j−mj2Þ; ð11Þ

where the states ψ i;j;n;m and the system eigenvalues ε are
obtained by direct diagonalization of Eq. (3). For the case
of a state where both excitations are localized on a
neighboring qubit, L ¼ 1. Figure 3(a) presents this set of
eigenvalues and its degree of localization of a 10 × 10 qubit
lattice with φ ¼ 3π=4, where one can notice a cluster of
correlated pairs highlighted by the dashed red circle.
Naturally, the presence of nonradiative decay increases
the collective decay rate for the entire set of states. Its effect
on the subradiant states and on the polaritons pairs can be
seen in the Supplemental Material [33].
One additional way to characterize these polariton pairs

is to investigate their entanglement. In particular, for
bipartite systems, a powerful concept to measure the degree
of entanglement between two quantum states is the von
Neumann entanglement entropy, which can be defined as

S ¼ −
P

νjλνj2 ln jλνj2P
νjλνj2

; ð12Þ

where λν is the Schmidt coefficients obtained via the
bipartite wave function rewritten using the Schmidt decom-
position as ψ ij;nm ¼ P

ν λνψ i;jψn;m. It can be seen in
Fig. 3(b) that the bound states correspond to the smallest
entanglement entropy, reflecting the fact that these states
are closest to the pure two-particle states. It can be seen in
Fig. 3(c) that, for highly correlated pairs when the position
of the first excitation is fixed (for example, by the
measurement), the second excitation is localized in the
vicinity. Conversely, the subradiant states present a delo-
calized pattern as shown in Fig. 3(d). Note that the two-
polariton pair class is not the most subradiant state of the
system. At the same time, it is known that the bound
polariton pair lifetime depends crucially on the parameter φ
[23]. It is therefore subject to further studies to check if
there exists a “magic” value of φ for which the bound
state becomes subradiant. An important implication of
the obtained results is revealed if one recalls the direct
mapping between the dynamics of single photons at the
two-dimensional lattice and two-photon dynamics at the

(c) (d)

(a) (b)

FIG. 3. (a) The two-excitation eigenvalues of the finite structure
system composed of 10 × 10 qubits. Each eigenvalue is charac-
terized by the localization degree L of its wave functions, in
which L ≈ 1ð0Þ stands for highly localized (delocalized) states.
The dashed red circle highlights the highly correlated polariton
states. (b) Entanglement entropy of two-polariton states: The
polariton pair’s spatial distribution jψ ij;nmj2 of the highest
localized state (ε ≈ 0.87 − 0.35i) and the most subradiant state
(ε ≈ 0.9 − 0.2i), respectively. The polariton phase is set at φ ¼
3π=4 and the nonradiative decay is fixed at Γnr ¼ 0.1Γ0. (c),(d)
The probability density profile for one of the photons when the
position of the second photon is fixed at the center of 10 × 10
qubit array (marked with red dot, (c) corresponds to the bound
state and (d) to scattering state).
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one-dimensional chain. This mapping has been actively
used recently to experimentally emulate quantum two-
photon correlations in classical circuits [37]. This mapping
can be extended to higher dimensional space: two-photon
correlations at the two-dimensional lattice emulate the
multiparticle correlations in 1D. Since probing of the
multiparticle correlations is an extremely challenging task
at the moment, the proposed structures may serve as an
effective playground for the emulation of the multiparticle
correlations.
To conclude, we have shown that two-photon bound

polariton states exist in two-dimensional WQED systems
and obtained their energy dispersion and spatial profile.
These states result from the interplay between infinitely
strong on-site repulsion of qubit excitations and strongly
nonparabolic dispersion of the polariton modes. The bound
states exist in finite two-dimensional structures of modest
size and can be probed experimentally via the scattering
measurements [27]. It has been recently shown that the
nonparabolic dispersion of polaritons in 1D WQED struc-
tures induced by the long-range hopping leads to a plethora
of peculiar physical effects ranging from interaction
induced quantum Hall phases [38] to quantum chaos
[21]. While up to now, the research was focused on 1D
geometry, the presented emergence of the strong correla-
tions of 2D photons indicates that 2D WQED structures
may host a variety of novel yet unexplored quantum
phenomena.
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