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We show that the inclusion of a recently found additional term of the spin polarization vector at local
equilibrium which is linear in the symmetrized gradients of the velocity field, and the assumption of hadron
production at constant temperature restore the quantitative agreement between hydrodynamic model
predictions and local polarization measurements in relativistic heavy ion collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
The longitudinal component of the spin polarization vector turns out to be very sensitive to the temperature
value, with a good fit around 155 MeV. The implications of this finding are discussed.
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Introduction.—Spin polarization in a relativistic fluid has
been observed in the quark gluon plasma (QGP) formed
in relativistic heavy ion collisions [1,2]. From a theory
standpoint, the quantitative tool to calculate the expected
polarization has mostly been a local equilibrium formula
relating the mean spin vector of a particle with four-
momentum p to the thermal vorticity at the leading order
[3]. For a spin 1=2 particle this reads

SμϖðpÞ ¼ −
1

8m
ϵμρστpτ

R
Σ dΣ · pnFð1 − nFÞϖρσR

Σ dΣ · pnF
; ð1Þ

where thermal vorticity is defined as the antisymmetric
derivative of the four-temperature field:

ϖμν ¼ −
1

2
ð∂μβν − ∂νβμÞ: ð2Þ

The four-temperature vector is related to the four-velo-
city u and the comoving temperature T by βμ ¼ uμ=T. In
the (1), nF is the Fermi-Dirac phase-space distribution
function: nF ¼ fexp½β · p − qμ=T� þ 1g−1.
The measured global spin polarization of Λ hyperons,

integrated over all momenta, turns out to be in quantitative
agreement with the predictions of the formula (1), the
thermal vorticity field being provided by hydrodynamic
simulations [4–8] and by other models [9–11]. However,
the predicted spin polarization as a function of momentum,
the so-called local polarization, disagrees with the mea-
surements. Particularly, the sign of the longitudinal com-
ponent of the spin polarization vector and the trend of the

component perpendicular to the reaction plane as a function
of the azimuthal angle are opposite to the model predi-
ctions [12].
For the QGP, the formula (1) is applicable to the final

hadrons, provided that Σ is identified with the hadroniza-
tion 3D hypersurface or, more rigorously, the hypersurface
where the system ceases to be a fluid at local thermody-
namic equilibrium. The failure of (1) in reproducing local
polarization stimulated much work in the field. While it has
become clear that hadronic decays cannot be responsible
for the discrepancies [13,14], investigations have been
undertaken on the impact of dissipative corrections [15–
19], of hadronic interactions [20,21], on kinetic equilibra-
tion [22–26] and on the possible role of the spin tensor and
an associated spin potential [16,27–30]. One may wonder
whether the inclusion of quadratic and higher order terms in
thermal vorticity would fix the discrepancies. However,
thermal vorticity—which is adimensional in natural units—
is definitely less than 1 over the decoupling hypersurface
(see Fig. 1) and subleading corrections are not expected to
cure the problem.
Spin polarization from thermal shear.—Lately, it has

been observed that, at the linear order in the gradients, there
is an unexpected additional contribution to spin polariza-
tion vector at local equilibrium [31,32]. In the derivation of
Ref. [31], for a spin 1=2 particle, this reads

SμξðpÞ ¼ −
1

4m
ϵμρστ

pτpλ

ε

R
Σ dΣ · pnFð1 − nFÞt̂ρξσλR

Σ dΣ · pnF
; ð3Þ

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, t̂ is the time direction in the

QGP or center-of-mass frame, and ξ is the symmetric
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derivative of the four temperature, defined as thermal shear
tensor:

ξμν ¼
1

2
ð∂μβν þ ∂νβμÞ: ð4Þ

This additional term is also a purely local equilibrium
term, i.e., nondissipative, and provides a contribution to the
spin which is comparable to (1) (see Fig. 1). It is obtained
[31] by expanding the thermodynamic field β in the local
thermodynamic equilibrium (LE) density operator:

ρ̂LE ¼ 1

ZLE
exp

�
−
Z
Σ
dΣμðT̂μνβν − ĵμζÞ

�
ð5Þ

from the point x where the Wigner function Wþðx; pÞ,
entering the general expression of the spin polarization
vector:

SμðpÞ ¼ 1

2

R
Σ dΣ · ptr½γμγ5Wþðx; pÞ�R

Σ dΣ · ptr½Wþðx; pÞ� ; ð6Þ

must be evaluated. In Eq. (5), T̂ is the symmetrized
Belinfante stress-energy tensor operator, ĵ is a conserved

current, and ζT its associated chemical potential. It is worth
dwelling into some mathematical details behind the for-
mulas (1) and (3). When evaluating the mean value of a
local quantum operator (such as the Wigner function) at
some space-time point x with the LE density operator (5),
i.e., OðxÞ ¼ Tr½ρ̂LEÔðxÞ�, in the hydrodynamic limit of
slowly varying β and ζ fields, one can obtain a good
approximation by Taylor expanding the fields at the same
point x and replacing a truncated expansion at some order
in the exponent of (5) as well as in the partition function Z
[33,34]. For instance, at the first order

βνðyÞ ≃ βνðxÞ þ ∂λβνðxÞðy − xÞλ

and replacing into the (5), with ζ ¼ 0 which is a good
approximation for the purpose of this work

ρ̂LE ≃
1

ZLE
exp

�
−βνðxÞP̂ν

− ∂λβνðxÞ
Z
Σ
dΣμðyÞðy − xÞλT̂μνðyÞ

�
;

¼ 1

ZLE
exp

�
−βðxÞ · P̂ −

�
1

T
∂λuνðxÞ þ uν∂λð1=TÞ

�

×
Z
Σ
dΣμðyÞðy − xÞλT̂μνðyÞ

�
: ð7Þ

In the above equation, P̂ν is the four-momentum operator,
βνðxÞP̂ν is the usual global thermodynamic equilibrium
exponent with constant four temperature equal to βðxÞ and
the second term in the exponent is the leading gradient
correction; also, the contributions from temperature gra-
dient and velocity gradient have been split for later use.
Retaining the zeroth order of the above expansion corre-
sponds to the so-called perfect fluid approximation; going
to higher orders implies including nondissipative quantum
corrections in the local equilibrium calculations. Since the
gradient of β supposedly gives rise to a small correction to
the leading term βνðxÞP̂ν, one can handle it as a perturba-
tion and apply linear response theory to obtain an approxi-
mation of the mean value which is linear in the gradient.
Starting from the general formula (6) and splitting ∂β
in Eq. (7) into an antisymmetric and a symmetric part
eventually yield the two terms (1) and (3), respectively [31].
It is also worth pointing out that the latter term stems from a
correlator with a nonconserved integral operator [31],
which explains the appearance of one particular vector t̂
in the formula (3); this vector can be interpreted as a sort of
mean normal vector perpendicular to the hypersurface Σ.
Gradient expansion for relativistic nuclear collisions

at very high energy.—In formulas (1), (3), and (6), the
hypersurface Σ should be the decoupling hypersurface
in order to be applicable to the quasifree hadronic effec-
tive fields and, at the same time, to be close to local

FIG. 1. Distributions of the magnitudes of the thermal vorticityffiffiffiffiffiffiffiffiffiffiffiffiffiffijϖ∶ϖjp
(top) and thermal shear

ffiffiffiffiffiffiffiffiffiffijξ∶ξjp
(bottom) at the

decoupling hypersurface for a temperature of 165 MeV and
impact parameter 9.2 fm at

ffiffiffi
s

p
NN ¼ 200 GeV.
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thermodynamic equilibrium. The question may arise
whether the formulas above are the actual best approxi-
mations at the leading order in the gradients for the
conditions of a relativistic nuclear collision at very high
energy. In fact, since the decoupling expectedly occurs at
constant temperature (temperature is the only effective
intensive variable as chemical potentials are negligible),
the approximation can be improved. Indeed, if Σ is an
isothermal hypersurface, the constant temperature T in
βμ ¼ ð1=TÞuμ can be taken out of the integral of the LE
density operator:

ρ̂LE ¼ 1

ZLE
exp

�
−
1

T

Z
Σ
dΣμT̂

μνuν

�
ð8Þ

and one can expand in a Taylor series only the four-velocity
u, which is not constant over Σ. Hence, the approximation
(7) is replaced with

ρ̂LE ≃
1

ZLE
exp

�
−βνðxÞP̂ν

−
1

T
∂λuνðxÞ

Z
Σ
dΣμðyÞðy − xÞλT̂μνðyÞ

�
: ð9Þ

Comparing the equations, it can be seen that the term
proportional to the gradient of temperature in (7) disap-
peared in the (9). However, it should be emphasized that
the temperature gradient ∂T itself does not vanish and it
is indeed perpendicular to the hypersurface T ¼ const.
Consequently, the term proportional to the gradient of
temperature in the expansion (7) is nonvanishing even if the
hypersurface Σ is T ¼ const and it eventually contributes to
both the spin polarization vector expressions in Eqs. (1) and
(3). In fact, the inclusion of such a term obtained by
expanding in full space-time a function which is constant
over the hypersurface, makes the first-order approximation
of the actual LE (5) a worse one, as it introduces a term
which would eventually be cancelled in the full Taylor
series. In other words, it is not necessary, neither is it a good
approximation, to expand in space-time a function which is
constant over some submanifold of space-time (like a 3D
hypersurface) if one has to integrate over that submanifold.
In conclusion, the approximation (9) is more accurate than
the (7) for the density operator (5) if Σ is a T ¼ const
hypersurface. With the (approximated) density operator (9),
it is straightforward to obtain the spin polarization vector in
the linear response theory; comparing the (7) with the (9),
all we have to do is to make the effective replacement

∂β →
1

Tdec
∂u;

where Tdec is the constant decoupling temperature, in both
Eqs. (1) and (3). Particularly, the spin polarization vector of
an emitted spin 1=2 baryon becomes

SμILEðpÞ ¼ −ϵμρστpτ

R
Σ dΣ · pnFð1 − nFÞ½ωρσ þ 2t̂ρ

pλ

ε Ξλσ�
8mTdec

R
Σ dΣ · pnF

;

ð10Þ

where ILE stands for isothermal local equilibrium,

ωρσ ¼
1

2
ð∂σuρ − ∂ρuσÞ

is the kinematic vorticity, and

Ξρσ ¼
1

2
ð∂σuρ þ ∂ρuσÞ

is the kinematic shear tensor. It should be stressed that
Eq. (10) is not equal to the sum of SμϖðpÞ and SμξðpÞ
integrated over the T ¼ const hypersurface, what is con-
firmed by numerical computation (see Fig. 3). Therefore,
Eq. (10) is the best approximation of the spin polarization
vector of a spin 1=2 baryon, at local equilibrium and at
linear order in the gradients of the thermodynamic fields for
an isothermal decoupling hypersurface. This equation
upgrades the original Eq. (1) and we are going to show
that it is able to restore the agreement between the hydro-
dynamic model and the data.
Analysis of Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.—To
compare the predictions of the hydrodynamic model with
typical initial conditions with the polarization data, we have
used two different ð3þ 1ÞD viscous hydrodynamic codes
in the Israel-Stewart formulation: vHLLE [35] and ECHO-QGP

[36,37]. The parameters defining the initial conditions have
been set to reproduce charged particle multiplicity distri-
bution in pseudorapidity as well their elliptic flow and
directed flow in Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
In order to match the experimental conditions of the

local polarization measurements of Λ hyperons [38], we set
the same centrality range in our hydrodynamic simula-
tions, corresponding to (20–60)% central Au-Au collisions.
vHLLE simulations have been initialized with averaged
entropy density profile from the Monte Carlo–Glauber
model, generated by GLISSANDO v.2.702 code [39]; ECHO-

QGP has been initialized with optical Glauber initial
conditions by using the same method as in Ref. [40], with
a fixed impact parameter b set to 9.2 fm.
In Fig. 2 we show the components of the rest-frame

polarization vector P ¼ 2S� along the angular momentum
PJ and along the beam direction Pz (for the description of
the QGP conventional reference frame, see [41]) as a
function of the transverse momentum of the Λ hyperon
for rapidity y ¼ 0, from vHLLE calculation. The upper
panels show the predictions of formula (1), and the lower
panels the predictions of the new term (3), at a decoupling
temperature Tdec ¼ 165 MeV. The two contributions are
comparable in magnitude and, most importantly, the new
term provides a local polarization in qualitative agreement
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with the data [38,42], both for the PJ and the Pz
components, and in agreement with a very recent analysis
[43] of the thermal shear contribution. The two terms are
added up and the result shown in the upper panels of the
Fig. 3. It can be seen that, although the model predictions
are somewhat closer to the experimental findings, there is
still a consistent discrepancy: a basically uniform PJ [42]

and still the wrong sign of Pz [38]. Finally, by using the
formula (10), based on isothermal local equilibrium, we
obtain polarization distributions, shown in the lower panels
of Fig. 3, which are in an agreement with the measure-
ments, with the right sign of Pz and the qualitatively correct
PJðϕÞ dependence. These findings are confirmed by a
corresponding analysis made with the ECHO-QGP code and
shown in Fig. 4.

FIG. 2. Λ polarization components at midrapidity as a function
of its transverse momentum ðpx; pyÞ, computed with vHLLE for
(20–60)% Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Upper panel:
polarization induced by thermal vorticity ϖ, lower panel:
polarization induced by thermal shear ξ.

FIG. 3. Same as Fig. 2, with the upper panels showing the sum
of Sμϖ and Sμξ from Eqs. (1) and (3); the lower panels show the
predictions of Eq. (10).
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FIG. 4. Λ polarization components at midrapidity as a function
of its transverse momentum ðpx; pyÞ, computed with ECHO-QGP.
Upper panel: contribution from the first term in Eq. (10) induced
by ω=T. Lower panel: full prediction of Eq. (10).

FIG. 5. Λ polarization component along the global angular
momentum, as a function of the azimuthal angle ϕ, computed
with vHLLE for (20–60)% Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
Experimental data points are taken from [42].
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Finally, we have compared the data with the predictions
of Eq. (10) at four different decoupling temperatures in
Figs. 5 and 6 by integrating the pT spectrum of the Λ in the
same range as in the data, that is 0.5–6 GeV. It can be seen
that the longitudinal component Pz is very sensitive to the
decoupling temperature, and it is in very good agreement
with the data, for Tdec value around 150–160 MeV; for
temperatures below around 135 MeV, the sign of the
longitudinal polarization flips. The PJ component is now
predicted to have a maximal value on the reaction plane, in
agreement with the data, however, with a milder descent as
a function of the azimuthal angle; also, it is less sensitive to
Tdec. We also note that the global polarization resulting
from the integration of PJ is still in a reasonably good
agreement with previous calculations. Also shown, in both
figures, are the contributions from the kinematic vorticity ω
(thin dashed line) and the kinematic shear Ξ (thin smaller
dashed line), at the decoupling temperature of 150 MeV. It
can be seen in Fig. 6 that the latter is crucial to flip the sign
of Pz and restore the agreement with the data, while the
vorticity term alone would give the wrong sign, as already
remarked in Ref. [6].
Discussion, conclusions, and outlook.—The recently

found additional shear term and the realization of the
constancy of Tdec are the two key ingredients to reproduce
the local polarization and the PJ and Pz patterns. This
finding is thus a striking confirmation of the local equi-
librium picture or, in perhaps more suggestive words, the
quasi-ideal fluid paradigm of the QGP, even in the spin
sector. Dissipative corrections to spin polarization may play
a role, but they appear not to be decisive. The standard

hydrodynamic picture with the initial conditions obtained
by fitting radial spectra, elliptic and directed flow, works
very well for the local polarization too. Another strong
indication from this finding is that, at very high energy, the
QGP hadronizes in space-time at constant Tdec to a more
accurate level than one could have imagined. Indeed, its
sensitivity to the gradients of the thermodynamic fields,
makes spin the ideal probe to investigate the space-time
details of hadron formation. Furthermore, as we have
shown, the longitudinal spin polarization turns out to be
very sensitive to the decoupling temperature, the causes of
which deserve to be studied in detail. Looking ahead to
future investigations, it is certainly important to compare
the predictions of the formula (10) as a function of
transverse momentum and rapidity besides azimuthal
angle. At lower energy, where the chemical potentials
are relevant, one can expect a decoupling hypersurface
different from the simple T ¼ const, and this will require a
reconsideration of the (10) in order to obtain accurate
predictions.
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