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A central question in resource theory is whether one can construct a set of monotones that completely
characterize the allowed transitions dictated by a set of free operations. A similar question is whether two
distinct sets of free operations generate the same class of transitions. These questions are part of the more
general problem of whether it is possible to pass from one characterization of a resource theory to another.
In the present Letter, we prove that in the context of quantum resource theories this class of problem is
undecidable in general. This is done by proving the undecidability of the membership problem for
completely positive trace preserving maps, which subsumes all the other results.
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Introduction.—The aim of resource theory is to charac-
terize the possibility of action of an agent who acts under
some kind of operational restriction [1]. To this end, one
specifies a set of transformations that the agent can freely
carry out, and asks general questions about its capabilities
when it is assumed that the allowed operations can be
composed repeatedly in any arbitrary order.
The paradigmatic example of a resource theory is the one

of local operations and classical communication (LOCC)
[2]. In this case, two agents who can access two different
halves of a shared quantum system are allowed to operate
only through local transformations and by sharing classical
information between them. It is a nontrivial fact that only
by composing operations from the LOCC set, a quantum
state can be perfectly teleported from one agent to the
other [3].
The example above shows that being able to identify

whether a transformation is part of a given resource theory
is an issue of practical relevance, which can give quite
surprising results. It should be noticed, though, that the
membership of the quantum teleportation to the LOCC set
is proven by explicitly presenting a protocol to implement
it. This kind of proof requires a certain amount of ingenuity
and the ad hoc constructions used do not help identifying
generic members of a set. For this reason, the question of
whether there is a general way to certify the membership of
a transformation to a set of free operations remains open.
A dual perspective about resource theories is given by

focusing on states rather than operations. In this context,
one assigns to each system a series of labels that quantify
how useful the state is. The paradigmatic example is given
by entanglement, the resource for LOCC operations. As a
matter of fact, most of the nontrivial protocols that can be
carried out within LOCC (among these, the quantum
teleportation protocol described above) are possible only
by the use of entangled states. For this reason, it is also of

practical importance to assess the value of a state within a
resource theory.
The standard approach is to define a set of functions,

called monotones, which do not increase under the appli-
cation of free operations. In this way, one can estimate
the resourcefulness of a state by looking at a family of
numerical labels.
Hence, there exist two possible natural characterizations

of a resource theory: in one case, a description of the
allowed operations is provided; in the other, a set of value
functions, the monotones, are specified. It is natural then
to ask whether there is a constructive way to pass from
one description to the other. This is equivalent to asking
whether it is possible to pass from the description about the
operational capabilities of an agent to the determination of
the resourcefulness of a state.
We prove here that both of the problems raised above are

undecidable for general resource theories of quantum
operations: namely, we prove that there is no algorithm
that decides whether a generic transformation is generated
by a set of free operations, and we show that this implies
that there is no algorithmic means of constructing from a set
of free operations a set of monotones describing the same
resource theory. It also follows from the undecidability of
the membership problem that it is impossible to certify
whether a transition is part of a resource theory. Moreover,
it is shown that given two sets of free operations it is
impossible to tell whether they describe the same set of
transitions. These negative results hint at the reason why
finding a complete set of monotones is usually a difficult
task for many particular resource theories.
Definitions.—In this section we provide the main def-

initions of the objects treated in the rest of the Letter.
Given a set S and an associative binary operation on it,

the semigroup S� is defined as the union of all the finite
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compositions of elements from S. In other words, S is the
generating set of S�.
Definition 1: Resource theory.—Given a set of opera-

tions F which contains the identity, the semigroup F �
characterizes a resource theory. The elements of F � are
called free operations.
In the following, we only consider the case in which the

elements of F are completely positive trace preserving
maps (CPTP) acting on density operatorsD and composing
in the usual sense of composition of maps.
Free operations naturally induce a partial order on the

state space:
Definition 2: Partial order induced by F �.—Given a set

of free operations F � and two states ρ, σ ∈ D, we say that
σ ≤F ρ, if there exists a ϕ ∈ F � such that ϕðρÞ ¼ σ.
Furthermore, if two states can be transformed into one

another through free operations, the two states are indis-
tinguishable to the resource theory. This motivates the
following definition.
Definition 3: Quotient space.—Any resource theory

naturally induces an equivalence relation on the space of
states as

ρ ≃F σ ⇔ σ ≤F ρ ∧ ρ ≤F σ: ð1Þ

The natural space in which the resource theory is defined
is D=≃F .
In order to quantify the value of a state, one introduces

functions which cannot increase under free operations.
Definition 4: Monotones and compatibility.—A function

is called monotone (with respect to a resource theory) when
it does not increase under the action of the free opera-
tions. Respectively, an operation ϕ is said to be compa-
tible with a set of monotones M if ∀ f ∈ M∀ ,
∀ ρ ∈ Df(ϕðρÞ) ≤ fðρÞ.
Definition 5: Complete set of monotones.—A set of mo-

notones MF is said to be complete (with respect to F �) if

∀f∈MF ; ∀ ρ; σ∈D; fðσÞ≤fðρÞ⇔σ≤F ρ: ð2Þ

That is, MF and F � identify the same partial order
structure on D.
Main results.—In this section we prove that deciding

whether a transition is present in a resource theory is
undecidable (Corollary 1), which implies that one cannot
tell whether two resource theories presented in terms of free
operations are the same (Corollary 2). Moreover, we also
show that it is impossible to algorithmically construct from
a set of free operations F � a set of monotones M which
describes the same resource theory (Corollary 3). These
facts are all consequences of the following:
Theorem 1.—The membership problem for semigroups

of CPTP maps is undecidable.
Proof.—The main arguments of the proof are inspired by

[4,5]. Define two generic matrices in SU(2):

A ¼ eiθn⃗·σ⃗; B ¼ eiθm⃗·σ⃗; ð3Þ

where n⃗ and m⃗ are vectors in R3 and σ⃗ ≔ fσx; σy; σzg is a
vector of Pauli matrices. It was proven in [6] that any pair
fA; Bg of this form generates a free semigroup whenever
n⃗ · m⃗ ¼ 0 and cos θ ∈ Qnf0;�1;� 1

2
g. A semigroup of two

elements is called free if there is a bijection between its
elements and binary strings or, equivalently, if there is no
finite composition of its elements that gives the identity.
We can then use the two matrices above to encode words
in f0; 1g�, where the star indicates arbitrary finite juxta-
position of the letters in a given set. Define γ as the
homomorphism that assigns to each binary word the
corresponding element in the semigroup fA;Bg�. In other
words, γ operates on binary strings by substituting to each 0
an A and to each 1 a B, and the juxtaposition of letters is
mapped to matrix multiplication [e.g., γð010Þ ¼ ABA].
In order to prove the theoremwe use a reduction to the Post

correspondence problem (PCP). Given two different homo-
morphisms h and g from the finite alphabet Γ to f0; 1g�, this
is the problem of deciding whether there is a nonempty word
w ∈ Γ� such that hðwÞ ¼ gðwÞ. This is exemplified in Fig. 1.
It is a classical result from computability theory that the PCP
is undecidable [7,8]. The idea of the proof is to show that if
the statement of the theorem were decidable, then the PCP
would be as well, generating a contradiction.
First, for each letter ai ∈ Γ define the two unitary

matrices:

hai ¼
�
γ½hðaiÞ� 02

02 AiB

�
; ð4Þ

gai ¼
�
γðgðaiÞÞ† 02

02 B†ðAiÞ†
�
: ð5Þ

FIG. 1. The PCP can be expressed in terms of dominoes: given
the two homomorphisms h and g from Γ� to f0; 1g�, we assign to
each letter x ∈ Γ a tile which has in the upper half hðxÞ written
out, and in the lower half gðxÞ. In the example above, hðaÞ ¼ 0
and gðaÞ ¼ 100, so that the a domino is constructed accordingly.
Since h is a homomorphism [i.e., hðxyÞ ¼ hðxÞhðyÞ], words in Γ�
can be represented by juxtaposing the dominoes corresponding to
each letter in the word. The PCP problem then translates to the
question whether one can find a sequence of dominoes that makes
the binary word appearing on top equal to the one on the bottom.
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Since both γ and h are homomorphisms, the matrices hai
compose as haihaj ¼ haiaj (similarly for gai ). These matri-
ces are constructed in such a way that the first diagonal
block encodes the image of the letter ai under the
homomorphism, while the bottom half is used to keep
track of its index.
We can then study the resource theory generated by the

set F ≔ f1; Hλ
ai ; G

λ
aigai∈Γ;λ∈ð0;1Þ, where we defined the

following two families of maps:

Hλ
aiðρÞ ≔ λhaiρh

†
ai þ ð1 − λÞ 1

4
;

Gλ
aiðρÞ ≔ λgaiρg

†
ai þ ð1 − λÞ 1

4
: ð6Þ

The composition in this case behaves asHλ1
aiH

λ2
aj ¼ Hλ1λ2

aiaj ,
and similarly with Gλ

ai . In this way, one can encode words
from Γ� into operations in F � constructed by composing
either only Hλ

ais or G
λ
ais.

We are now ready to prove the claim. Consider the
operation

ψðρÞ ≔ λρþ ð1 − λÞ 1
4
: ð7Þ

Deciding whether ψ ∈ F � is equivalent to the PCP. In fact,
the composition rule of the elements in Eq. (6) implies that
in order for ψ to be part of the semigroup, there has to be a
sequence of hai and gai that gives the identity. Since the
semigroup generated by A and B is free, the only way to
obtain the identity in the second diagonal block is by having
a composition of the form gan ;…; ga2ga1ha1ha2 ;…; han (or
any cyclic composition thereof). At the same time, given
that the hmatrices and the gmatrices cluster in two different
groups, in order to get the identity in the first diagonal block
the following should hold:

γ(gðanÞ)†;…; γ(gða1Þ)†γ(hða1Þ);…; γ(hðanÞ) ¼ 12; ð8Þ

which is equivalent, thanks again to the freeness condition,
to the existence of a word w ∈ Γ� such that hðwÞ ¼ gðwÞ.
This reduces the PCP to the membership problem for CPTP
maps. ▪
The theorem just proved has a number of implications. In

particular:
Corollary 1: Reachability problem.—Given two states ρ

and σ and the description of F , it is undecidable whether
there exists ϕ ∈ F � such that ϕðρÞ ¼ σ.
Proof.—This follows directly from the proof of Theorem

1: choose an arbitrary ρ and set σ to be ψðρÞ [i.e., the state
defined by the right hand side of Eq. (7)]. Because of the
structure of the semigroup F �, a transition between the two
states is possible if and only if ψ ∈ F �. Since this is
undecidable, the corollary follows. ▪
Moreover, it is also easy to see that

Corollary 2.—Given two generating sets F 1 and F 2,
there is no algorithmic means of deciding whether they
describe the same resource theory.
Proof.—Take as F 1 the set F defined in Theorem 1 and

as F 2 ≔ F ∪ fψg. The transition ρ → ψðρÞ is trivially
present in F 2. From Corollary 1, though, it is undecidable
to say whether this transition is generated by F 1. Hence,
deciding whether two different sets of free operations
describe the same set of transitions is impossible in
general. ▪
Before passing to prove Corollary 3, we present the

following:
Lemma 1.—For any F � there exists a complete set of

monotones.
Proof.—It is natural to first define a set of monotonesM

on the quotient spaceD=≃F and to just later extend it to the
whole space of density matrices.
The idea of the proof is to assign to each state ρ ∈ D a

directed graph corresponding to all the possible states
reachable from ρ through arbitrary applications of elements
of F �. A graphical depiction of how this looks is presented
in the first panel of Fig. 2. Each vertex in the figure
corresponds to a state, and the presence of an arrow from
the vertex ρ1 to ρ2 corresponds to the existence of a
transformation ϕ ∈ F � such that ϕðρ1Þ ¼ ρ2. Passing from
D to the quotient space D=≃F makes the graph acyclic,
since all the vertices in the same equivalence class (like the
ones connected by the green lines in the figure) collapse to
a single point.
In order to define monotones on D=≃F , we then only

have to focus on acyclic directed graphs. Moreover, one has
to assign to each continuous semigroup fΦtgt∈R ⊂ F � a
generator L, i.e., a map satisfying Φt ≕ etL. At this point, a
length can be assigned to each edge in the graph: if the

FIG. 2. Graphical representation of the action of a resource
theory F � on the state ρ. Each vertex represents a state, and the
presence of an edge from the vertex ρ1 to ρ2 corresponds to the
existence of a transformation ϕ ∈ F � such that ϕðρ1Þ ¼ ρ2. It
should be noticed that in order to keep the graph clean, we
omitted many edges in the figure. For example, there should be a
line directly connecting ρ to σ, since F � contains all the
compositions. The green arrows show that equivalent states
appear in the graph in the form of a cycle. Collapsing all the
cycles to a representative vertex makes the graph acyclic. The red
line is the longest trajectory between ρ and σ, so that fFρ ðσÞ ¼ 1

7
.
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transformation corresponding to an edge cannot be further
decomposed inside F �, then we assign a length one; if the
transformation is part of a semigroup generated by a single
element L, the length is given by the parameter t; finally, if
an edge corresponds to multiple transformations, the length
is inductively defined as the sum of the lengths. We can
then assign to each state ρ ∈ DC a monotone fFρ in the
following way: (i) if a state σ cannot be reached from ρ,
then fFρ ðσÞ ≔ 2; (ii) if σ is part of at least one of the
trajectories stemming from ρ, then assign the value
fFρ ðσÞ ≔ ½1=ðlþ 1Þ�, where l is the length of the longest
path from ρ to σ. Finally, fFρ can be extended to the whole
space of density matrices, by assigning to two represen-
tative of the same equivalence class σ1 ≃F σ2 the same
value, fFρ ðσ1Þ≡ fFρ ðσ2Þ.
In order to prove that the setM ¼ ffFρ gρ∈D is complete,

we first need to prove that it is compatible. This holds by
construction. In fact, suppose that there exists a fFρ , a σ, and
a ϕ ∈ F � such that fFρ (ϕðσÞ) > fFρ ðσÞ ≔ ½1=ðsþ 1Þ�. The
longest trajectory from ρ to ϕðσÞ is long at least sþ ε for
some positive ε, implying that fFρ (ϕðσÞ) ≤ ½1=ðsþ εþ
1Þ� < ½1=ðsþ 1Þ�, which gives the desired contradiction.
Similarly, it also follows by construction that the set is
complete. Assume that for two given states ρ and σ and
∀ f ∈ M one has fðσÞ ≤ fðρÞ. This directly implies that
fFρ ðσÞ ≤ fFρ ðρÞ ¼ 1, so by definition there exists a trajec-
tory from ρ to σ or, in other words, a ϕ ∈ F � such that
ϕðρÞ ¼ σ. This concludes the proof. ▪
Lemma 1 shows that monotones can be as powerful in

constraining a resource theory as the usual characterization
in terms of free operations. Since we are just interested
about the possibility in principle, we constructed an over-
complete set M, setting aside questions about finding the
minimal complete set. It is worth pointing out, though, that
in many resource theories the complete set is actually finite:
for example, in the resource theory of nonuniformity one
only needs d − 1monotones, where d is the dimensionality
of the Hilbert space [9]. Before investigating how one could
find a minimal complete set, it is important to understand
whether such a complete set could be found at all. The
negative answer to this issue is given by the following:
Corollary 3.—Given a set of free operations F there is

no algorithmic means of constructing a recursive complete
set of monotones M associated with it.
Proof.—Lemma 1 implies the existence of a complete

set of monotonesM associated toF . Assume the existence
of an algorithm constructing this set. Moreover, also
assume the existence of an algorithm Acmp which takes
two arbitrary states ρ and σ as input, and decides whether
∀ f ∈ M, fðρÞ ≥ fðσÞ. If such an algorithm did not exist,
then the claim would follow trivially, since one wouldn’t be
able to check the compatibility of F with M. If such an
algorithm existed, then one could decide whether a tran-
sition between two arbitrary states is present in F � simply

by running Acmp. This is in contradiction with Corollary 1.
Therefore, there is no general algorithm constructing the
complete set M associated with F . ▪
Conclusions.—In the present Letter, we showed that

standard questions in resource theories hide undecidability
issues. Consider, for example, the main problem in this
context: whether it is possible to convert a state into another
through a series of allowed operations. The undecidability
of this question is the content of Corollary 1. This directly
implies the impossibility of completely identifying a
generic resource theory. In particular, given two different
characterizations of a resource theory in terms of two
different sets of free operations, it is impossible to tell
whether they induce the same set of transitions
(Corollary 2). Finally, Corollary 3 implies that it is also
impossible to construct a set of value functions which
completely describes the resource theory induced by a set
of free operations.
The main theorem supporting these results is the

undecidability of the membership problem for semigroups
of CPTP maps (Theorem 1). It should be noticed that in the
proof of this theorem we used a resource theory which, if
somewhat artificial, has anyway a precise physical inter-
pretation: the maps Hλ

ai and Gλ
ai defined in Eq. (6) are

rotated depolarising channels, which correspond to the
experimental setting in which one can only apply unitary
transformations of the form hai or gai, introducing at each
application some quantum noise into the system.
Nonetheless, it would be interesting to prove the same

theorem within the framework of a more natural resource
theory. A promising candidate in this respect is given by the
LOCC set: its structure is notoriously difficult to character-
ize mathematically [10], a fact that could be explained if
one could show that it contains an undecidable set. This
challenging possibility would require the devise of a new
proof and it is left for future research.
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