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We report on the quantum electrodynamical analog of a Sagnac phase induced by the fast rotation of a
neutral nanoparticle onto atomic waves propagating in its vicinity. The quantum vacuum Sagnac phase is a
geometric Berry phase proportional to the angular velocity of rotation. The persistence of a noninertial
effect into the inertial frame is also analogous to the Aharonov-Bohm effect. Here, a rotation confined to a
restricted domain of space gives rise to an atomic phase even though the interferometer is at rest with
respect to an inertial frame. By taking advantage of a plasmon resonance, we show that the magnitude of
the induced phase can be close to the sensitivity limit of state of the art interferometers. The quantum
vacuum Sagnac atomic phase is a geometric footprint of a dynamical Casimir-like effect.
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The rotation of a frame attached to an interferometer with
respect to an inertial frame induces an interferometric phase
proportional to the angular frequency of the rotation and to
the area enclosed by the interferometer. This phenomenon,
known as the Sagnac effect [1], has several technological
applications such as optical-based Sagnac sensors which
have been embarked on aircraft for decades. Three decades
ago, it was extended to matter waves [2]. Since then, cold-
atom gyrometers based on the Sagnac effect [3,4] have
been constantly improved to outperform their optical
equivalents [5–9] (see Ref. [10] for a recent review).
We propose here to investigate the following closely

related scheme—what if, instead of rotating the interfer-
ometer as a whole, one simply spins a neutral nanoparticle
placed between its arms? Such a question naturally arises as
rotation speeds beyond 5 GHz are achieved with optically
levitated nanoparticles [11]. As in the Casimir effect, we
show that the interaction between the atom and the nano-
particle mediated by the quantum electromagnetic field
leads to an atomic phase induced by the particle’s spinning.
We introduce the quantum vacuumSagnac phase (QVSP) as
an atom-interferometry footprint of noninertial effects in the
quantum vacuum. The QVSP is thus analogous to the
dynamical Casimir effect [12,13], but no real photons are
emitted in the configuration discussed hereafter. Indeed,
here the relative motions of the interfering wave packets
with respect to the sense of the particle’s rotation plays a
crucial role in the atom-particle interaction mediated by the
quantum vacuum field. While dynamical Casimir photons
are too scarce to be measurable [14–16] even when
considering a cavity resonance [17–20], we show that the
magnitude of the QVSP is close to the sensitivity limit of
state-of-the-art atom interferometers [10,21] when taking
into account the record rotation frequencies recently dem-
onstrated with optically levitated nanoparticles [11,22,23].

The emission of dynamical Casimir photons out of the
quantum vacuum state by a dielectric sphere undergoing a
nonuniform rotation was considered in Ref. [24]. The
electromagnetic field at finite temperature was predicted
to exert a quantum friction torque on a neutral dispersive
microsphere spinning at a constant rotation frequency
[25,26]. The QVSP imprinted on the atomic center of
mass (CM) provides an additional insight on how the
rotation modifies the surrounding quantum electromagnetic
field even when no real photons are emitted.
The QVSP is also a consequence of the motion of atomic

CM with respect to the nanoparticle. In the context of atom
interferometry, a nonlocal phase associated with pairs of
paths (rather than with individual ones) was shown to result
from the field-mediated interaction between a moving atom
and a material surface [27–29]. Dynamical Casimir emis-
sion of photons [30–34], decoherence [35,36], and quan-
tum friction [37–43] also result from the coupling between
a moving atom and the quantum electromagnetic field.
Given their high sensitivity, atom interferometers are
candidates for the first experimental demonstration of
motional effects in Casimir physics, and the QVSP would
be particularly appealing for that purpose.
The QVSP is also related to the Aharonov-Bohm effect

[44]. Such connection is well understood in the case of the
standard Sagnac effect (see Ref. [45] for a recent review), as
a rotating referential emulates the presence of magnetic
fields thanks to the similarity between Coriolis and Lorentz
forces [46]. This analogy has enabled the production of
artificial effective magnetic fields in neutral cold-atom
gases set into rotation [47]. Like the standard Sagnac
phase, the QVSP is a geometric phase that can be cast in
terms of an effective magnetic field. In addition, the QVSP
can be seen as the Aharonov-Bohm-like counterpart of the
Sagnac effect. Indeed, in the Aharonov-Bohm experiment,

PHYSICAL REVIEW LETTERS 127, 270401 (2021)

0031-9007=21=127(27)=270401(6) 270401-1 © 2021 American Physical Society

https://orcid.org/0000-0002-6806-4567
https://orcid.org/0000-0001-5287-172X
https://orcid.org/0000-0002-4949-9717
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.270401&domain=pdf&date_stamp=2021-12-29
https://doi.org/10.1103/PhysRevLett.127.270401
https://doi.org/10.1103/PhysRevLett.127.270401
https://doi.org/10.1103/PhysRevLett.127.270401
https://doi.org/10.1103/PhysRevLett.127.270401


a magnetic field confined to a solenoid imprints a phase in a
region free of magnetic fields. Here, we show that a rotation
confined to a domain of space imprints a phase on matter
waves probing quantum vacuum fluctuations outside the
rotating region.
For simplicity, we consider a nanoparticle rotating around

an axis of symmetry with constant angular velocity Ω. In
this case, the modification of the surrounding quantum field
arises from the frequency dependence of the particle
dielectric constant. We consider a two-level atom in the
ground state interactingwith the quantum vacuum field. The
atomCM is in a quantum superposition of twowave packets
that propagate in the vicinity of the spinning nanoparticle as
indicated in Fig. 1. We show that the resulting QVSP is
geometric, i.e., independent of the atomic velocity [48,49]
in the limiting case of very narrow wave packets.
Furthermore, we express the QVSP as the circulation of
a geometric vector field, analog to the vector potential in the
Aharonov-Bohm effect, along the interferometer paths. The
effect can be enhanced by considering nanoparticles with a
plasmon resonance [50] in order to optimize the material
dispersion at the atomic transition frequency.
Motional van der Waals (vdW) atomic phase.—We

consider a moving atom interacting with the rotating nano-
particle between the initial and final times t ¼∓ T=2. The
atomic waves acquire a phase associated with the dipolar
interaction Ĥdip ¼ −d̂ · Ê, with d̂ representing the atomic
dipole moment operator. The electric field operator Ê is
taken at the instantaneous average atomic position rkðtÞ ¼
hr̂ðtÞik for each wave packet k. We evaluate the phase
difference Δϕ12 accumulated by the coherent superposition
state of two narrow atomic wave packets following the two
distinct paths P1 ¼ ½r1ðtÞ�, P2 ¼ ½r2ðtÞ�. Up to second
order in perturbation theory, this phase difference reads [29]

Δϕ12 ¼ φ11 − φ22 þ φ12 − φ21; ð1Þ

φkl ¼
1

4

ZZ
T=2

−T=2
dtdt0fgH

d̂
ðt; t0ÞGR;S

Ê
½rkðtÞ; t; rlðt0Þ; t0�

þ gR
d̂
ðt; t0ÞGH;S

Ê
½rkðtÞ; t; rlðt0Þ; t0�g: ð2Þ

The contributions φkl for k ¼ l and k ≠ l correspond to
local and nonlocal phases, respectively. In the concrete
applications discussed later on, the local phases ϕk ≡ φkk
will play a more important role. We have used the trace of
the retarded Green’s function for the scattered electric field
GR;S
Ê

ðr; t; r0; t0Þ ¼ Tr½GR;S
Ê

ðr; t; r0; t0Þ�, which captures how
electrodynamical propagation is modified by the presence
of the nanoparticle (scatterer) placed at the origin. Likewise,
the trace GH;S

Ê
of the Hadamard Green’s function represents

the change in the field fluctuations induced by the presence
of the nanoparticle. The retarded Green’s function of a
vectorial operator ÔðtÞ is defined as the averaged commu-
tatorGR

Ô ij
ðt; t0Þ ¼ ði=ℏÞΘðt − t0Þh½ÔiðtÞ; Ôjðt0Þ�iwithΘðτÞ

denoting the Heaviside function. The Hadamard Green’s
function corresponds to the average value of the anticom-
mutator GH

Ô ij
ðt; t0Þ ¼ ð1=ℏÞhfÔiðtÞ; Ôjðt0Þgi.

The first term on the rhs of (2) accounts for the electric
field response to dipole fluctuations, while the second one
corresponds to the dipole response to vacuum fluctuations
modified by the presence of the nanoparticle. The dipole
Hadamard Green’s function is isotropic and has the
analytical form gH

d̂ ij
ðt; t0Þ ¼ αA0ω0 cosω0ðt − t0Þδij for a

two-level model. Here, αA0 represents the static polariz-
ability and ω0 is the transition frequency. We focus on the
nonretarded vdW regime, for which the atom-particle
distance rðtÞ is much smaller than the transition wavelength
λ0 ¼ 2πc=ω0. As shown below, the QVSP is maximized in
the immediate vicinity of the rotating nanoparticle, which
turns the vdW regime more interesting for experimental
implementations.
We now consider the retarded Green’s function for the

scattered electric field GR;ðSÞ
Ê ij

ðr; t; r0; t0Þ. This function

corresponds to the ith component of the electric field at
position r and time t induced by an instantaneous point
dipole oriented along the jth direction at position r0 and
time t0 after scattering at the nanoparticle at some inter-
mediate time t00 such that t0 < t00 < t. From now on, we
assume that the nanoparticle is very small and neglect
multipolar contributions beyond the electric dipolar one.
The retarded Green’s function in the frequency domain can
then be expressed in terms of the electric polarizability
tensor αΩðωÞ of the rotating nanoparticle as

GR;S
Ê

ðr; r0;ωÞ ¼ G0ðr; 0;ωÞ · αΩðωÞ · G0ð0; r0;ωÞ: ð3Þ

The free-space retarded Green’s function for the electric
field becomes frequency independent [51] G0

ijðr;r0;ωÞ≈
ð3RiRj=R2−δijÞ=ð4πϵ0R3Þ in the nonretarded vdW regime
(R¼r−r0). In the absence of rotation, any direction
orthogonal to the symmetry axis of the nanoparticle is a
principle axis of the polarizability tensor α0ðωÞ with an
eigenvalue denoted by α̃ðωÞ. Rotation around the symmetry

path 1

path 2

FIG. 1. Scheme of the quantum vacuum Sagnac interferometer.
The center of mass of a ground-state atom propagates as a
quantum superposition of two wave packets around a spinning
neutral nanoparticle (angular frequency Ω).
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axis leads to a nondiagonal correction δαΩðωÞlm ¼
αΩ

lmðωÞ − α0
lmðωÞ ≈ iα̃0ðωÞPn ϵlmnΩn [25] which lies at

the heart of the QVSP. We have assumed a nonrelativistic
rotation with angular velocity Ω, α̃0ðωÞ is the frequency
derivative of the polarizability eigenvalue, and ϵlmn denotes
the Levi-Civita tensor components.
QVSP induced by a rotating nanoparticle.—We provide

first a heuristic discussion of the QVSP derived below. This
phase arises from the scattering of virtual photons on the
spinning nanoparticle, which carry back to the atom a trace
of the particle rotation. The QVSP captures the noninertial
footprint on the quantum electromagnetic field as the
atom probes fluctuations in the vicinity of the particle.
In this sense, it constitutes a dynamical Casimir-like effect.
However, as a nanoparticle spinning at constant velocity
produces no radiation [24,25], the QVSP does not rely on
the presence of real dynamical Casimir photons—nor does
it rests on open-quantum system dynamics [52] responsible
for quantum friction [41,43].
The problem under consideration involves very different

time scales, listed below from the slowest to the fastest in
the vdW regime: the time-of-flight T of the atomic CM in
the vicinity of the rotating particle, the period of rotation
(a fraction of nanoseconds), the inverse of the atomic
transition frequency 2π=ω0, the response time of the
rotating particle due to dispersion, and finally the light
travel time between the moving atom and the particle, r=c.
Such hierarchy of time scales allows us to take several
approximations. The dominant contribution in Eq. (2)
comes from intervals t − t0 of the order of the response
time of the nanoparticle, enabling us to neglect the
CM acceleration and take rkðt0Þ ≃ rkðtÞ − ðt − t0ÞvkðtÞ in
Eqs. (2) and (3).
In addition, the displacement of the atomic CM during

t − t0 is much smaller than the wavelengths of field modes
contributing to the electric field Green’s functions. Thus, we
Taylor expand the latter around the position rkðtÞ. We start
by deriving the local contribution to the QVSP and defineϕΩ

k
as the Ω-dependent contribution to the phase ϕk in Eq. (2).
We write it as the sum ϕΩ

k ¼ ϕΩ
qs;k þ ϕΩ

mot;k of a quasistatic
and of a motional contribution. The former is obtained by
taking identical arguments for the retarded and advanced
positions [r ¼ r0 ¼ rkðtÞ] in the electric Green’s function,
while the latter involves instead the gradient of the Green’s
functions and the instantaneous atomic CM velocity.
The quasistatic contribution ϕΩ

qs;k vanishes by symmetry
considerations [53]. The QVSP thus arises exclusively from
the atomic motion during the electrodynamical delay time
t − t0 associated with the exchange of virtual photons
between the atom and the nanoparticle. We write ϕΩ

k ¼
ϕΩ
mot;k ¼ ϕΩ;dip

k þ ϕΩ;f
k as the sum of contributions from

dipole and field fluctuations, respectively. They correspond

to the first and second terms in Eq. (2). We use the
condition ω0T ≫ 1 to derive

ϕΩ;dip
k ¼ −

ω0α
A
0

4

Z
T=2

−T=2
dt vkðtÞ · ∂ω∇r0 Im½δGR;S

Ê
ðr; r0;ωÞ�;

ð4Þ
where the spatial and frequency derivatives are taken at r0 ¼
r ¼ rkðtÞ and ω ¼ ω0, respectively. Here, δG

R;S
Ê

represents
the Ω-dependent contribution to the scattered Green func-
tion, which is obtained by taking δαΩðωÞ instead of the full
tensorαðωÞ in Eq. (3). The frequency derivative captures the
time delay associated with the nanoparticle response to the
field (in the form of an induced dipole) during the atomic
motion. On the other hand, the delay associated with the
light propagation time from the atom to the nanoparticle is
negligible within the vdW approximation. Accordingly, we
take the nonretarded vdW approximation for the free-space
Green’s function G0ðr; r0;ωÞ when deriving the scattered
field propagator δGR;S

Ê
ðr; r0;ωÞ from Eq. (3).

The contribution from field fluctuations ϕΩ;f
k is given by an

expression similar to (4) in terms of the retarded Green’s
function for the dipole (polarizability) and the Hadamard
Green’s function for the field.Using the fluctuation-dissipation
theorem ∇r0G

H;S
Ê

ðr; r0;ωÞ ¼ 2sgnðωÞIm½∇r0G
R;S
Ê

ðr; r0;ωÞ�,
with sgnðωÞ denoting the sign function, we find a contri-
bution to the local QVSP identical to the dipolar one. We
write the final result for the local QVSP as a geometric
integral [53], which is the main result of this Letter:

ϕΩ
k ¼ 9

2

ω0α
A
0 α̃

00
Rðω0Þ

ð4πϵ0Þ2
Z
Pk

dr ·
Ω × r
r8

; ð5Þ

where α̃R is the real part of the nanoparticle’s polarizability
eigenvalue. The integral is performed along the interferom-
eter path Pk delimited by the initial and final positions
rkð∓ T=2Þ. As in the standard Sagnac effect [46,47], the
QVSP given by Eq. (5) is a geometric phase that can be cast
as the line integral of an effective vector potential propor-
tional to the angular velocityΩ. TheQVSP (5) possess all the
distinctive features of a geometric phase: it is independent of
the velocity magnitude, but changes sign when the direction
of propagation is reversed.
As an important insight in its geometric nature, one can

show [53] that the QVSP is indeed a Berry phase [54,55] of
the full quantum system “two-level atom+field” undergoing
a unitary and adiabatic quantum evolution steered by the
atomic position. Because of the dipole interaction, the
instantaneous ground state of this quantum system changes
continuously as the atom propagates nearby the spinning
nanoparticle, following a quantum trajectorywhich depends
on the interferometer path. By integrating the corresponding
Berry connection, one retrieves exactly the local QVSP (5).
The correction associated with electrodynamical

retardation is given by [53] ϕΩ
ðcÞ;k¼3ω0α

A
0 α̃

0
Rðω0Þ=

½ð4πϵ0Þ2c2�
R
Pk
dr·½ðΩ×rÞ=r6� and is negligible for the
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example discussed below. In the case of a finite tempera-
ture θ, the local QVSP is multiplied by the factor
cothðℏω0=2kBθÞ (kB ¼ Boltzmann constant), which is very
close to one for any realistic example of atomic transition.
In other words, the contribution from thermal fluctuations
is negligible and the QVSP is a genuine quantum vacuum
effect.
Examples of interferometer designs.—To illustrate our

findings, we calculate the phase for two specific geom-
etries: either a circle of radius R centered on the nano-
particle, or two parallel straight lines enclosing the particle.
In both cases we assume that Ω ¼ Ωẑ is orthogonal to the
plane containing the trajectories. The first arrangement is a
textbook example of a Sagnac interferometer, whereas the
latter corresponds to a more realistic situation in atom
interferometry [56–58]. One finds ϕΩ

fr¼Rg ¼ 9πl6
Ω=R

6 for
the circular trajectory when the senses of rotation of atom
and nanoparticle coincide; and ϕΩ

fx¼x1;−L=2≤y≤þL=2;z¼z1g ≈
45πl6

Ωx1=ð32r7⊥Þ with r⊥ ¼ ðx21 þ z21Þ1=2 for a straight
segment of length L satisfying the condition jx1j; jz1j ≪
L=2 ≪ λ0 for consistency with the vdW approxima-
tion. We have introduced the characteristic length scale
lΩ ¼ ½ω0α0α

00
Rðω0ÞΩ=ð4πϵ0Þ2�1=6.

Nonlocal contributions to the QVSP difference.—We
now discuss the nonlocal QVSP contribution φΩ

12 − φΩ
21

corresponding to the Ω-dependent part of the nonlocal
phases in Eq. (1). In a different context, cross talks of
the interferometer paths can influence significantly the
motional phases [27–29] or decoherence rates [35,59]
induced by the quantum vacuum. While the nonlocal
QVSP difference vanishes for circular trajectories, it is
nonzero when considering two parallel straight-line trajec-
tories with the nanoparticle at the midpoint (x2 ¼ −x1 and
z1 ¼ z2 ¼ 0). In this case, the nonlocal QVSP contribution
has an opposite sign with respect to the local one,
thus reducing the total QVSP difference to ΔϕΩ

12 ¼
63πl6

Ωsgnðx1Þ=ð32x61Þ. For this geometry, the nonlocal
contribution represents a sizable part of the total QVSP
difference.
Estimation of the QVSP for finite-width atomic wave

packets and a spherical nanoparticle.—We estimate the
magnitude of the QVSP in a practical interferometer
implementation. Specifically, we consider a Mach-
Zehnder configuration where path 1 flies near a rotating
nanosphere of radius a, and path 2 evolves far away from
the nanosphere. A similar interferometer geometry was
used in [56–58] for the measurement of quasistatic vdW
phases. In this setup, the QVSP receives only a local
contribution from path 1, namely ΔϕΩ

12 ¼ ϕΩ
1 . In order to

enhance the QVSP, we investigate materials for which the
polarizability exhibits a sharp frequency dependence at the
atomic transition frequency.
For this purpose, we use a plasmon resonance [50]

and seek metals for which the polarizability α̃ðωÞ ¼
ð4πϵ0Þa3½ϵðωÞ − 1�=½ϵðωÞ þ 2� is maximized by reducing

ϵðωÞ þ 2 at the atomic transition frequency ω0. Within the
Drude model, the dielectric constant reads ϵðωÞ ¼ 1 − ω2

P=
½ωðωþ iγÞ�, where ωP is the plasma frequency and γ is the
inverse of the electronic relaxation time. The plasma reso-
nance in the dipole approximation is at ωres ¼ ωP=

ffiffiffi
3

p
.

Since we want to maximize α̃R
00ðωÞ rather than α̃0ðωÞ, we

need the atomic transition frequency to be slightly shifted
with respect to ωres. We consider Na atoms, for which the
static polarizability is αA0=ð4πϵ0Þ ¼ 2.4 × 10−29 m3 and the
dominant transition (3s1=2 − 3p3=2) has a frequency ω0 ¼
3.198 × 1015 rad=s [60]. We take the plasma frequency of
the nanosphere to be ωP ¼ 5.549 × 1015 rad=s so as to
maximize α̃00Rðω0Þ. Such fine tuning can be achieved, for
instance, from the size dependence of the plasmon reso-
nance in nanospheres [61,62]. Our value for ωP is also very
close, within less than 1%, to the bulk plasma frequency of
potassium [63]. Accordingly, we take the relaxation fre-
quency of potassium γ ¼ 2.795 × 1013 rad=s in our
numerical estimation (Fig. 2).
We average the atomic phase over the transverse wave

packet widths following the procedure of Refs. [56–58] for
(quasistatic) vdW phases. The phase acquired by atoms
flying along the trajectory fx0 ¼x;−L=2≤y0≤L=2;z0 ¼zg
at a constant velocity v ¼ v ŷ, is the sum of the vdW phase
ϕvdWðx; z; vÞ, as derived by integration of the instantaneous
vdW potential along the trajectory, and the QVSP ϕΩðx; zÞ:

FIG. 2. Average QVSP versus (a) velocity and (b) width of the
Gaussian atomic beam used in the interferometer. Parameters:
(a) a ¼ 50 nm, w ¼ 100 nm. (b) a ¼ 35 nm, v ¼ 3 km=s (dot-
ted line), v ¼ 4 km=s (dash-dotted line) and v ¼ 5 km=s (solid
line). In (a),(b) we have considered a two-level Na atom with the
static polarizability αA0 ¼ ð4πϵ0Þ × 2.4 × 10−29 m3 and transition
frequency ω0 ¼ 3.198 × 1015 rad=s. We have taken a nanosphere
of potassium spinning at the angular velocity Ω ¼ 2π × 5 GHz.
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ϕðΩ; x; z; vÞ ¼ ϕvdWðx; z; vÞ þ ϕΩðx; zÞ. The known
result [56] for the vdW phase follows from Eqs. (2) and
(3) in the quasistatic limit: ϕvdWðx; z; vÞ ≃ 9πα0ω0α̃Rðω0Þ=
½4.ð4πϵ0Þ2vr5⊥� with r⊥ ¼ ðx2 þ z2Þ1=2. There are two
important differences between the vdW phase and the
QVSP. The former is dynamical and thus inversely propor-
tional to the velocity, while the latter is geometric and thus
velocity independent. On the other hand, the vdW phase is
unaffected by the nanosphere’s spinning, while the QVSP
is proportional to the angular velocity Ω.
The experimentally accessible phase reads ϕ̄ðΩ; vÞ ¼

arctan ½sin½ϕðΩ; x; z; vÞ�=cos½ϕðΩ; x; z; vÞ��, where the ave-
raging is performed over the transverse coordinates x, z. We
consider a Gaussian atomic wave packet of transverse
width w and longitudinal velocity v. In practice, one may
gradually increase the nanosphere rotation in order to
isolate the average QVSP as the Ω-dependent part of the
total average phase: ϕ̄ΩðΩ; vÞ≡ ϕ̄ðΩ; vÞ − ϕ̄ð0; vÞ. In spite
of the geometric nature of ϕΩðx; zÞ, the presence of the
dynamical phase ϕvdWðx; z; vÞ together with the averaging
procedure involving trigonometric functions turn ϕ̄ΩðΩ; vÞ
velocity dependent in the case of finite-width wave packets.
We take the angular velocity Ω ¼ 2π × 5 GHz recently

achieved with optically levitated nanoparticles [11]. We
also consider thin atomic beams of width w ≤ 100 nm
centered at the edge of the spinning particle. Such colli-
mation may be obtained by using diffraction through a
nanograting [58] placed in the vicinity of the spinning
particle, or by tight focusing techniques considered for
atom lithography [64]. Prospective focusing techniques
[65,66] show indeed that atomic beam widths w ≃ 8 nm
may be attained. We plot ϕ̄ΩðΩ; vÞ versus velocity in
Fig. 2(a) for a nanosphere of radius a ¼ 50 nm and an
atomic wave packet of width w ¼ 100 nm. Figure 2(b)
presents the variation of ϕ̄ΩðΩ; vÞ with the wave packet
width, for a ¼ 35 nm and for different velocities of a few
km=s. The averaged QVSP tends to increase with the
atomic velocity and is enhanced by atomic beam focusing.
However, ϕ̄ΩðΩ; vÞ may be significantly attenuated around
specific velocities or width values under the influence of
the quasistatic vdW phase. To avoid the detrimental effect
of the vdW potential, we consider fast atomic beams, with
velocities comparable to those of Ref. [58]. Figure 2(b)
shows that an average QVSP ϕ̄ΩðΩ; vÞ ≃ 0.1 mrad is
attained for w ¼ 8 nm. Such value is close to the current
phase sensitivity limit in atom interferometry [10,67].
Conclusions.—We have shown that the fast rotation of a

nanoparticle imprints a geometric phase analogous to a
Sagnac phase on a ground-state atom propagating in its
vicinity. The persistence of a noninertial effect beyond the
region where the rotation actually occurs is reminiscent of
the Aharonov-Bohm effect, with the vector potential
yielding a finite atomic phase in a region free of magnetic
field. We have assumed the interferometer to be at rest with

respect to an inertial frame. Thus, the noninertial effects are
exclusively mediated by the quantum vacuum field through
the scattering on a rotating nanoparticle. The resulting
QVSP is a dynamical Casimir-like modification of the
atomic phase, whose observation might be more at hand
than the detection of dynamical Casimir photons. Quantum
dipolar and field fluctuations contribute equally to the
QVSP, which can be enhanced by using materials exhibit-
ing a plasmon resonance near the atomic transition fre-
quency. The QVSP might become within reach of
experimental observation given the state of the art in atom
interferometry and nanorotors.
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