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Suspensions of active agents with nematic interactions exhibit complex spatiotemporal dynamics such as
mesoscale turbulence. Since the Reynolds number of microscopic flows is very small on the scale of
individual agents, inertial effects are typically excluded in continuum theories of active nematic turbulence.
Whether active stresses can collectively excite inertial flows is currently unclear. To address this question,
we investigate a two-dimensional continuum theory for active nematic turbulence. In particular, we
compare mesoscale turbulence with and without the effects of advective inertia. We find that inertial effects
can influence the flow already close to the onset of the turbulent state and, moreover, give rise to large-scale
fluid motion for strong active driving. A detailed analysis of the kinetic energy budget reveals an energy
transfer to large scales mediated by inertial advection. While this transfer is small in comparison to energy
injection and dissipation, its effects accumulate over time. The inclusion of friction, which is typically
present in experiments, can compensate for this effect. The findings suggest that the inclusion of inertia and
friction may be necessary for dynamically consistent theories of active nematic turbulence.
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Active matter on the microscale consists of motile
agents, such as bacteria [1–4] and cells [5,6], filaments
driven by motor proteins [7–11], motile algae [12–14], or
colloids [15,16]. Suspended densely in a liquid, they form
so-called active fluids, in which the flow is driven on the
scale of the agents [17]. Their collective behavior can lead
to complex mesoscale phenomena, such as active turbu-
lence, which is reminiscent of driven hydrodynamic flows
and has been observed, e.g., in suspensions of bacteria
[1,18,19] and in microtubule kinesin mixtures [11,20]. The
latter case is an example of an active liquid crystal, for
which continuum models have been adapted from liquid
crystal theory to include active stresses that excite the flow
field [21–23].
An individual microscopic agent is subject to drag forces

in the fluid, which are large compared to its inertial forces
due to its small size, mass, and propulsion speed [24–26].
As a consequence, the agent’s dynamics are dominated by
its self-propulsion and the viscous damping of the fluid.
However, the collective motion that leads to active turbu-
lence has been found to significantly exceed velocities
found for individual agents [1,27]. This raises the question
of whether the collective behavior of many active agents, in

principle, can excite flows in which inertial effects become
apparent.
Here, we address this questionwith a detailed study on the

impact of inertia on dense suspensions of active agents in the
framework of an established two-dimensional continuum
model of active nematic liquid crystals [28–31], which has
been related to experimental results [32]. In this model for
wet active matter, hydrodynamic interactions have either
been taken into account using Stokes flow [23,33,34], or
unsteady Stokes flow [31,35–37]. Here, we additionally
include the full Navier-Stokes dynamics to test whether
active stresses can excite collective inertial flows. In
particular, we explore under which conditions large-scale
flow patterns like the ones observed in two-dimensional
hydrodynamic turbulence can emerge [38–40]. To this end,
we perform numerical simulations of this model with and
without inertial advection and friction and compare various
flow statistics in the different regimes.
To study the impact of advective inertia on the fluid flow

of two-dimensional active nematic turbulence, we use the
continuum equations established for a dense suspension
of motile, aligning particles [37], which originate from the
well-studied Beris-Edwards model of liquid crystal theory
[33,41–43]. In essence, the equations couple the fluid flow to
an order parameter field describing the nematic order. The
fluid flow is described by the incompressible (∇ · u ¼ 0)
Navier-Stokes equation, which in nondimensional form reads

Renð∂tuþ u ·∇uÞ ¼ −∇pþ Δu − Rfu

þ 1

Er
∇ · ½σe − Raσa�: ð1Þ
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In this nondimensional form based on the nematic
scales mn, ln, and tn (cf. Supplemental Material [44]),
the equation weights the inertial forces with the micro-
scopic Reynolds number Ren ¼ ρunln=η, and the elastic
and active stresses with the inverse of the Ericksen number
Er ¼ ηunln=K, where ρ is the mass density, η the dynamic
viscosity, and K an elastic constant. In contrast to classical
fluids, active nematics feature an additional elastic stress
σe ¼ −λSΔQþ ðΔQÞQ − QðΔQÞ þ λSQðS2 − 1Þ [51] as
well as the active stress σa ¼ Q, which couple the orienta-
tional field Q to the flow field. While the elastic stress
describes the reaction of the flow to the particles’ reor-
ientation, the active stress models the impact of motility on
the fluid flow [21]. The ratio Ra ¼ l2n=l2a of nematic and
active length scales varies the relative strength between the
stresses. It depends on the nematic l2n ¼ K=C and the active
l2a ¼ K=α length scales defined based on the material
constants K and C and the activity α. In addition to the
original model [37], we include linear friction as a simple
approximation to interactions between a two-dimensional
active nematic layer and its surrounding. We control its
influence with the nondimensional friction number
Rf ¼ l2n=l2f, which we define via the friction length scale
l2f ¼ η=μ based on the friction coefficient μ. The orienta-
tional order is described by the symmetric and traceless
second-rank tensor Qij ¼ Sðninj − δij=2Þ, where n is a

director and S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TrðQ2Þ

p
quantifies the local nematic

order. The orientational field evolves in its nondimensional
form according to

∂tQþ u ·∇Q ¼ λSE −WQþ QW þ ΔQ − QðS2 − 1Þ;
ð2Þ

where Eij ¼ ð∂iuj þ ∂juiÞ=2 and Wij ¼ ð∂iuj − ∂juiÞ=2
are the symmetric and antisymmetric parts of the velocity
gradient, respectively. The alignment parameter λ controls
the particles’ reaction to shear [33]. The system’s relaxation
to a uniformly aligned state is effectively described by the
diffusion of boundaries via ΔQ as well as local alignment
via QðS2 − 1Þ.
As a measure for the impact of inertial effects on the

fluid flow, we focus on the self-advection term u ·∇u in
Eq. (1) which has not been considered in previous work
[31,35–37] due to the low-Reynolds-number approxima-
tion. For direct comparison, we performed numerical
simulations on a periodic domain of size L. We use a
pseudospectral scheme for spatial discretization with a
fourth-order Runge-Kutta scheme for integration in time.
We scanned a range of values for the active number Ra
which includes the onset of active nematic turbulence and
ranges well into the turbulent regime (cf. Supplemental
Material [44], Table S1). Within the studied para-
meter regime, we practically define the onset of active
nematic turbulence by determining the lowest active

number showing the creation and annihilation of defects
(Ra ≈ 0.05, cf. Fig. 3(a) and Supplemental Material [44],
Fig. S1). As a starting point, we fix the microscopic
Reynolds and the Ericksen number Ren ¼ Er ¼ 0.1 as in
[37] (cf. Supplemental Material [44], Table S2). In order to
study the statistics independent of the initial conditions, we
equilibrated the system until it reached a statistically sta-
tionary state before analyzing the data (cf. Supplemental
Material [44]). To achieve well-converged statistics, we
averaged over an ensemble of Nens ¼ 100 realizations with
independent random initial conditions as well as over the
simulated time in the statistically stationary state.
Active stresses in this model for active nematic turbu-

lence are able to induce inertial effects. A visualization
of the main observations is given in Fig. 1. For that, we
computed an ensemble with a fixed set of parameters
(Ra ¼ 0.2). This ensemble transitions over time from the
original (O), over the inertial (I) regime, to the regime with
inertia and friction (IF), by numerically switching on
advection (u · ∇u) at the beginning of the first, and linear
friction (Rf > 0) at the beginning of the second transition.
Changes from one to the next regime are clearly visible in

O

onset
advection

I IF

onset
friction

FIG. 1. Advective inertia causes the formation of large-scale
flow patterns and an increase in kinetic energy. Linear friction
reduces these effects. Top: time evolution of the total kinetic
energy Etot in the original (O), inertial (I), and inertial with
friction (IF) regimes. Displayed are individual realizations (light
blue) and the ensemble average (dark blue) with indicated times
at which advection and friction are switched on (dashed lines).
Center and bottom: Snapshots of the vorticity ω ¼ ∂xuy − ∂yux
(color map) and the velocity field (contour lines) taken from the
statistically stationary states in each respective regime (box sizes
L and 4L, L ¼ 204.8, Ra ¼ 0.2, Ren ¼ 0.1, Er ¼ 0.1,
Rf ¼ 7.5 × 10−4, see also Supplemental Movies S1–S3).
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the visualization as well as in the kinetic energy of the
flow field.
Visually, the flow field in the original regime exhibits

complex motion displayed by counterrotating vortices (red
and blue patches) which are interspersed by small vortex
dipoles. The dipoles originate from the active stresses
produced by topological defects in the orientational field
and move through the system. While these basic features
persist in the inertial regime, the scale of motion increases
drastically: rotating patterns on the scale of half the box size
emerge. These patterns fluctuate strongly, decay, and
reform over time (cf. Supplemental Material [44], movies
S1–S3). If the simulation domain is large enough (compare
results for L and 4L), they form metastable condensatelike
patterns. The formation of homogeneous condensates, i.e.,
large homogeneous vortices as known from classical two-
dimensional turbulence [39,52,53] and other continuum
models of active turbulence [54,55], seems to be prevented
by the small, propagating vortex dipoles. However, the
observations suggest that for a sufficiently large system,
the disturbances by individual defects become small in
comparison to the large-scale flow pattern, and a clearer
and more stable condensatelike structure forms.
The kinetic energy in the original regime fluctuates

around a mean value. At the onset of advection, however,
the energy increases until it saturates to a higher mean
value. While the initial increase in energy is visually
accompanied by a build-up of more chaotic and longer-
ranged motion, the new steady state corresponds to the fully
developed flow with large-scale motion.
The appearance of large-scale motion together with the

increase in kinetic energy demonstrate that the inclusion of
advective inertia changes the dynamics and statistics of the
fluid flow drastically. Furthermore, this suggests a con-
nection between the scales of the flow and the increase in
kinetic energy.
Indeed, a spectral analysis of the kinetic energy, i.e., its

spectrum and budget, explains the observations (Fig. 2).
The kinetic energy spectrum provides a scale-by-scale
characterization of the kinetic energy and is defined as [40]:

Eðk; tÞ ¼ 1

2Δk

X
k≤jkj<kþΔk

jûðk; tÞj2; ð3Þ

where Δk ¼ 2π=L. Comparing the original and inertial
regime [Fig. 2(a)], the spectrum displays a prominent rise in
energy at small wave numbers, i.e., large scales. In contrast,
energy increases only a little at higher wave numbers
corresponding to smaller scales. Consequently, the increase
in total kinetic energy in the inertial regime primarily stems
from energy accumulating at large scales. This fits well
with the observation of dominant large-scale motion. The
spectral energy budget allows us to study scale by scale
how much energy each term in Eq. (1) injects into or
dissipates from the flow:

∂tE ¼ T þDþ Se þ Sa þ F; ð4Þ

where Tðk; tÞ is the inertial energy transfer due to advec-
tion, Dðk; tÞ the viscous dissipation, Seðk; tÞ the elastic
dissipation, Saðk; tÞ the active injection, and Fðk; tÞ the
dissipation through friction (cf. Supplemental Material
[44]). Interestingly, energy injection by active stresses
occurs on a broad range of scales, featuring a maximum
at intermediate scales [Fig. 2(b)]. In the steady state of the
original regime, viscous and elastic forces dissipate the
injected energy, i.e., the three contributions balance each
other at each scale [56]. In the inertial regime however, the
advection term mediates an energy transfer between scales
[Fig. 2(c)]. It extracts energy around the scale of maximal
injection and transfers the majority towards larger and a
small portion towards smaller scales. This is quantified by
the energy flux [Fig. 2(d)]

Πðk; tÞ ¼
Z

∞

k
dk0Tðk0; tÞ; ð5Þ

where a negative flux indicates an inverse transfer to larger
and a positive flux a direct transfer to smaller scales. This
flux of energy between scales leads to an overall increase in
energy, which is compensated for on small scales by
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FIG. 2. Advective inertia mediates an inverse energy transfer to the largest scales leading to an accumulation of energy and large-scale
motion. Linear friction can compensate for this by directly dissipating the transferred energy. The original (O) regime is compared to the
inertial (I) regime as well as to the regime with inertia and friction (IF): ensemble- and time-averaged (a) kinetic energy spectrum EðkÞ,
(b) and (c) energy budget contributions (4), (d) energy flux ΠðkÞ. The dotted lines indicate the scale with maximal active energy
injection. (L ¼ 204.8, Ra ¼ 0.2, Ren ¼ 0.1, Er ¼ 0.1, Rf ¼ 7.5 × 10−4)
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viscous dissipation but remains initially unbalanced on
large scales. Only after an initial accumulation of energy on
large scales, viscous dissipation becomes strong enough to
compensate for any further flux mediated by advective
inertia. Interestingly, the active stress contribution results in
an even larger injection on these scales when the large-scale
energy is increased, which is balanced by a similar increase
in viscous dissipation [Fig. 2(b)]. Remarkably, the peak
magnitude of the energy transfer due to advection is about
one order of magnitude smaller than the peak magnitudes
of the active stress contribution and viscous dissipation,
indicating that inertial advection has a comparably small
effect at any particular instant, which, however, builds up
over time.
The spectral analysis demonstrates that advective inertia

is responsible for an inverse transfer of energy towards
larger scales, at which energy accumulates, resulting in the
observed large-scale motion. To quantify how the strength
of active forcing mediates the inertial effects, we vary Ra
ranging from the onset of active nematic turbulence until
deep into the turbulent regime (Fig. 3).
Recall that we define the onset of active nematic

turbulence by where defects first spontaneously form
and annihilate [Ra ≈ 0.05, cf. Fig. 3(a) and Supplemental
Material [44], Fig. S1]. The number of defects [57]
increases with activity in both regimes as can be expected
for increased disorder due to stronger flow. Interestingly, it
is smaller in the inertial than in the original regime.
As indicated in Fig. 1, the total kinetic energy EtotðtÞ ¼P
k Eðk; tÞΔk is higher in the inertial than in the original

regime. As can be expected for stronger active driving,
the difference grows larger with activity [Fig. 3(b)].
Interestingly, it is already nonzero at the onset of active
nematic turbulence and grows continuously. This suggests
that inertial effects are non-negligible for all activities
studied in this parameter regime.
The turbulent Reynolds number based on the inte-

gral scale is a typical measure for the importance of
inertial effects in comparison to viscous dissipation in
turbulent flows: Ret ¼

ffiffiffiffiffiffiffi
Etot

p
li=ν, where ν ¼ η=ρ is the

kinematic viscosity and li is the integral length scale
(cf. Supplemental Material [44]). Indeed, in both regimes,

the emerging turbulent Reynolds number is larger than
unity for all activities [Fig. 3(d)], which means that inertial
effects are not negligible (cf. Supplemental Material [44]).
The difference in Reynolds numbers between the original
and the inertial regime increases, as the kinetic energy, with
activity. This is readily understood because the turbulent
Reynolds number is proportional to the root of the kinetic
energy, and because the integral length scale increases with
the emergence of large-scale patterns in the inertial regime
[Fig. 3(c)].
The parameter scan for the activity demonstrates that

advective inertia changes the fluid flow increasingly with
activity, already starting at the onset of active nematic
turbulence. Consistent modeling, therefore, requires the
inclusion of the advection term in this parameter regime.
Furthermore, surface friction has been found to influence
quasi-two-dimensional active nematic layers experimen-
tally [20,32] as well as numerically [58,59]. This motivates
the addition of linear friction to the model (regime with
inertia and friction in Fig. 1). Linear friction dissipates
energy primarily on large scales, which contain the most
energy [Fig. 2(c)]. It thereby counteracts the accumulation
of energy through the inverse transfer and prohibits the
formation of large-scale flow [Figs. 1 and 2(a)]. While it
can restore the system to a state very similar to the original
regime (Fig. 3), i.e., without advection and friction, its
impact on the flow depends on the relative magnitude of
friction coefficient and activity. A scan of the friction
coefficient shows that the qualitative flow features and
statistics transition smoothly from the inertial to the original
regime and beyond with increasing friction number
(Supplemental Material [44], Figs. S3 and S4).
So far, we have varied the active forcing strength at fixed

microscopic Reynolds and Ericksen numbers. To get a
broader overview, Fig. 4 shows the turbulent Reynolds
number as a function of the microscopic Reynolds number
and the Ericksen number for two different activities for the
case including inertia and friction. For small microscopic
Reynolds numbers and comparably large Ericksen num-
bers, the turbulent Reynolds number is generally small,
consistent with recent findings [45] (cf. Supplemental
Material [44], Table S2, Fig. S5). However, as the
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FIG. 3. Advective inertia impacts statistics of the fluid flow already for weak and increasingly for stronger active forcing. The original
(O) regime is compared to the inertial (I) regime as well as to the regime with inertia and friction (IF): ensemble- and time-averaged
(a) number of defects, (b) total kinetic energy Etot, (c) integral length li, (d) turbulent Reynolds number Ret computed from (b) and (c).
(L ¼ 204.8, Ren ¼ 0.1, Er ¼ 0.1, Rf ¼ 7.5 × 10−4)
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Ericksen number is decreased, the turbulent Reynolds
number increases. The largest turbulent Reynolds numbers
emerge for the smallest Ericksen numbers, where they can
have values significantly larger than one even if the
microscopic Reynolds number is small. In this regime,
active stresses can effectively drive the flow, thereby
exciting inertial effects.
To summarize, by comparing a continuum model for

active nematic turbulence with and without inertial advec-
tion, we find that inertial effects can significantly alter the
fluid flow by an accumulation of kinetic energy on the
largest scales of the flow. In particular, we observe large-
scale motion in the form of condensatelike flow patterns
when inertial effects are present. Remarkably, inertial
effects start to play a role already for small activities,
provided the active stresses can effectively drive the flow.
Linear friction, included to model surface friction

present in the experimental setups, compensates for the
effects of inertial advection by dissipating the inversely
transferred energy, resulting effectively in a flow similar to
the system without advection and friction. Including
inertial advection and friction appears therefore necessary
for a consistent theoretical description of active nematic
turbulence in certain parameter ranges. Based on this work,
a careful assessment of experimental parameters could
enable predictions about the significance of inertial effects
and their interplay with surface friction, which we hope will
spur future experimental investigations in that direction.
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