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Despite there being an infinite variety of types of flow, most rheological studies focus on a single type
such as simple shear. Using discrete element simulations, we explore bulk granular systems in a wide range
of flow types at large strains and characterize invariants of the stress tensor for different inertial numbers
and interparticle friction coefficients. We identify a strong dependence on the type of flow, which grows
with increasing inertial number or friction. Standard models of yielding, repurposed to describe the
dependence of the stress on flow type in steady-state flow and at finite rates, are compared with data.
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The rheology of many materials is often characterized by
relating the shear stress to the strain rate through a scalar
viscosity. However, the strain-rate tensor _Eij and the stress
tensor Tij contain more information on the flow of the
system, and their connection cannot necessarily be reduced
to such a scalar relation as it may be more complex [1,2].
For instance, their eigenvalues may not be related by a
single proportionality constant. To fully characterize the
tensorial relationship between _Eij and Tij, one must also
explore more than one type of flow. In dense granular gases,
significantly different behavior is observed in laminar
versus shear flows [3,4].
While studies often focus on planar shear flow, there exists

a continuous spectrum of types of flow. The type of flow has
been found to have a significant effect on yield strength [5],
dilatancy [6], and fluctuations [7] in granular materials, and
there is a need to develop and apply new methods to explore
its effect ongranular rheology.HerewemeasureTij in steady-
state flow and focus on its alignment with _Eij and the
dependence of a scalar shear stress [Eq. (2)] on the type of
flow. This dependence or stress envelope is a surface in the
three-dimensional space created by the principal stresses. It
defines the set of possible principal stresses produced by a
steady-state flow at a given inertial number, a dimensionless
measure of strain rate defined in Eq. (7).
The dependence of shear stress on flow type at the onset

of flow in granular materials is often described using simple
models such as Mohr-Coulomb or Drucker-Prager [8].
While these models traditionally characterize the yield
stress in the small-strain limit [9], they can be extended
to describe steady-state flows at large strains as in the
original μðIÞmodel [10]. Despite frequent use, these simple
models are inaccurate [5], and advanced models are needed
to capture the shape of stress envelopes [11–13].
In this work, we use discrete element method (DEM)

simulations to explore frictional granular rheology across

different irrotational flow types, along with the well-studied
simple shear flow. Of these flows, only simple and pure
shear are planar while the others are triaxial flows. To reach
large strains, we leverage generalized Kraynik-Reinelt
boundary conditions [14–16], which have been impactful
in exploring the rheology of soft materials and complex
fluids [17,18]. This work extends results from earlier
studies on the dependence of granular rheology on flow
type [5,19–22] to steady-state flows where we quantify the
shape of the stress envelope for a wide range of inertial
numbers and friction coefficients.
The relative importance of the flow type is measured

in terms of a strength ratio Ψ, the ratio of the shear stress
in triaxial extension (TXE) to compression (TXC).
Importantly, we find that Ψ, and therefore the shape of
the envelope, heavily depends on the friction coefficient
and inertial number. As either of these parameters increase,
Ψ decreases, as the type of flow has a greater impact on
rheology. Such characterizations are important for both
fundamentally understanding the physics of flow and for
developing tensorial formulations of granular rheology
relating _Eij and Tij [2,23–25], similar to the development
of microstructure-aware constitutive models of suspensions
[26]. Our results are also used to assess the application of
yield models to steady-state flow.
It is convenient to use the deviatoric stress and strain-rate

tensors σij ¼ Tij þ PIij and _ϵij ¼ _Eij − 1=3 _EVIij where P
is the pressure, _EV is the volumetric strain rate, and Iij is the
identity tensor. The eigenvalues of σij and _ϵij, or their
principal components, are designated as σ1 ≥ σ2 ≥ σ3 and
_ϵ1 ≥ _ϵ2 ≥ _ϵ3. In granular flows, σij and _ϵij are approx-
imately coaxial as they have equivalent time-averaged
eigenvectors seen here and in Refs. [9,23,27,28].
However, their eigenvalues are not always simply propor-
tional implying the tensors are not codirectional
[23,24,27,29,30] as further discussed below.
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To quantify the magnitude of shear stress, we use the
second invariant of σij,

Jσ2 ¼
1

2
ðσ21 þ σ22 þ σ23Þ; ð1Þ

to define

σS ≡
ffiffiffiffiffi

Jσ2
p

: ð2Þ
The third invariant,

Jσ3 ¼
1

3
ðσ31 þ σ32 þ σ33Þ; ð3Þ

includes additional information on the direction of flow and
is therefore used to define a Lode angle

θσ ¼ 1

3
arcsin

�

Jσ3
2

�

3

Jσ2

�

3=2
�

ð4Þ

commonly used to categorize types of flow [31]. In this
definition, θσ varies between −π=6 and π=6 with the
extreme cases corresponding to triaxial compression (TXC,
σ2=σ1 ¼ 1) and extension (TXE, σ2=σ3 ¼ 1), respectively.
Between these limits, a continuous spectrum of flows exists
with a midpoint of θσ ¼ 0 corresponding to pure shear
(σ2 ¼ 0). Equivalent invariants are defined for the strain-
rate tensor _ϵij: J _ϵ2, _ϵS, J

_ϵ
3, and θ

_ϵ. If θ_ϵ ¼ θσ then σij and _ϵij
are codirectional. Systems sheared with different values of
θ_ϵ are rendered in Fig. 1.
Simulations of 40 000 particles were run in LAMMPS

[32,33] with diameters evenly distributed between 0.9 and
1.1a and constant densities of ρ ¼ m=a3, where a and m
are units of length and mass. Similar to Refs. [24,34,35],
interactions included Hookean normal forces with a stiff-
ness k, equally stiff tangential frictional forces with a
sliding friction coefficient μS [29], and damping forces
proportional to the difference in normal and tangential
velocities with prefactors of 0.5 and 0.25, respectively,
corresponding to a coefficient of restitution between 0.62
and 0.75, depending on particle radii [29]. Avelocity-Verlet
integrator was used with a time step of Δt ¼ 0.02

ffiffiffiffiffiffiffiffiffi

m=k
p

.
Tij included both kinetic and virial contributions [36].
Systems were initialized below jamming for all μS at a

volume fraction of ≈0.52 [37]. The simulation cell was then
deformed to maintain a fixed _ϵij while affinely remapping
particle positions. The principal components of _ϵij are

_ϵ1 ¼ _ϵS

�

cosðθ_ϵÞ − 1
ffiffiffi

3
p sinðθ_ϵÞ

�

_ϵ2 ¼ _ϵS
2
ffiffiffi

3
p sinðθ_ϵÞ

_ϵ3 ¼ −_ϵS
�

cosðθ_ϵÞ þ 1
ffiffiffi

3
p sinðθ_ϵÞ

�

ð5Þ

using definitions of θ_ϵ and _ϵS and the fact that _ϵ1 þ _ϵ2 þ
_ϵ3 ¼ 0 since _ϵij is trace free. Generalized Kraynik-Reinelt
periodic boundaries were used to reach large strains
[15,16,38].
To maintain a target pressure of PT ¼ 10−5k=a, a

Berendsen barostat was used to isotropically expand or
contract the simulation cell [39]. The length L of each side
of the cell evolved according to

Lðtþ ΔtÞ ¼ LðtÞ
�

1þ P − PT

PT

Δt
TB

�

1=3
ð6Þ

where TB is a damping time that controls how fast the
barostat responds to deviations in pressure. At small
values of TB ≲ Tc ≡ 0.1_ϵ−3=2S ðk=mÞ1=4, P is nearly con-
stant while the volume V fluctuates rapidly. At TB ≳ Tc,
fluctuations in P grow while V stabilizes. While fluctua-
tions vary considerably with TB, no significant effect was
detected on the time-averaged stress tensor [40]. In steady
state, the time-averaged V is constant and h _EVi ¼ 0.
Initially using TB ¼ 0.2

ffiffiffiffiffiffiffiffiffi

m=k
p

to accelerate compres-
sion, systems were sheared either to a strain of ϵS ¼ 0.5 or
for a duration of 105

ffiffiffiffiffiffiffiffiffi

m=k
p

, whichever is longer, where
ϵS ¼ _ϵST and T is the time sheared. TB was then reduced to
0.1Tc, to minimize fluctuations in P at all studied rates.
Above a strain of 1.0, the system is in steady-state flow
and average properties do not depend on strain [41].
A stress ratio μ≡ σS=P and θσ were calculated using a

FIG. 1. Constant-pressure profile of the average steady-state
stress ratio μ (radial distance) as a function of Lode angle θσ

(counterclockwise polar angle) for systems at inertial numbers I
of 10−3 (inner, blue) and 10−1 (outer, red) and interparticle
friction μS ¼ 0.1. Predictions from Mohr-Coulomb (dotted,
orange) and Drucker-Prager (dashed, green) models are included.
Small, initially cubic systems are rendered after shearing for a
strain ϵS ¼ 0.5 at θ_ϵ ¼ −π=6 (TXC), −π=12, 0 (pure shear),
π=12, and π=6 (TXE) to illustrate different types of flow using
conventional boundary conditions. Arrows indicate contracted
(red) and expanded (green) axes.
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strain-averaged stress tensor for each combination
of μS, _ϵS, and θ_ϵ.
We first focus on the rheology in TXE, TXC, and pure

shear flow. Note that pure shear, like simple shear, is the
only planar flow. At each θ_ϵ, the rheology seen in Fig. 2 is
characteristic of a monotonic μðIÞ relationship where

I ¼ _ϵShdi
ffiffiffiffiffiffiffiffi

ρ=P
p

ð7Þ

is the inertial number, a scaled measure of the strain rate
[10,42], and hdi ¼ a is the average particle diameter. With
decreasing I, μ decreases and approaches a limiting value
μc in the quasistatic limit. With increasing interparticle
friction μS, μ reaches μc at a larger value of I. μ is
maximized in TXC and decreases with increasing θ_ϵ going
to TXE. The ratio of μ between the TXE and TXC limits
μTXE=μTXC is known as the strength ratio Ψ [43] and
depends on both μS and I as further discussed below.
A subset of data was also generated for pressures of 10−4

and 10−6 but no significant change in μðIÞ curves was
observed reflecting the negligible pressure dependence in
the hard-particle limit [10,24,44].
For every θ_ϵ and μS, the rise in μ with increasing I is

captured by a monotonic relation:

μ − μc ¼ AIα ð8Þ

where α and A are fitted parameters. This model is
commonly used to describe dense granular rheology in
simple shear [24,44–48] but its efficacy across a wide range
of Lode angles has not yet been tested. To capture the
change in Ψ with I, there must be either a θ_ϵ-dependent α
or A. Due to challenges in fitting power-law models [49],
our data are unable to rule out either option. However, data
are reasonably described using a θ_ϵ-dependent value of A

and a θ_ϵ-independent exponent of α ¼ 0.4, 0.7, and 0.9
for values of μS ¼ 0.0, 0.03, and 0.1, respectively. An
increase in α with μS has been previously identified in
Refs. [24,44,46–48]. At large I > 0.1, data begin deviating
from Eq. (8) and may reflect a transition to a gas
regime [50].
Despite being a rotational flow, results from simple shear

simulations are also included in Fig. 2 due to its common
usage [24,42,45,48,51]. Our simple shear data overlap with
results from Ref. [24] which used fully stress-controlled
simulations and a Nosé-Hoover barostat. In frictionless
simulations, there is no significant difference between
simple and pure shear. However for μS ≠ 0, simple shear
curves are lower than pure shear. This is not totally
unexpected as the kinematics of the flow differ subtly [2].
This behavior could be attributed to microstructural effects
[24] although it is not explored here. These two
flow types offer the best chance of generalizing rheology
to more complex models such as those found in Ref. [24].
In fact, the simple shear model in Ref. [24] would reduce
to a Reiner-Rivlin type model for pure shear due to the lack
of rotation.
As mentioned above, Ψ ¼ μTXE=μTXC is a key measure

of the effect of flow type on rheology and is plotted against
I in Fig. 3 for different μS. As I increases, Ψ decreases.
With increasing friction μS, curves of Ψ shift downward
and saturate at larger I. Crucially, this implies the stress
envelope develops a stronger dependence on flow type at
higher I and μS. Interestingly at μS ¼ 0, curves reach a
value of Ψ ≈ 0.93. It is unknown to the authors whether a
system could ever reach Ψ ¼ 1.0 which would correspond
to an isotropic rheology. From our results, this could only
be possible for frictionless systems near jamming as
anisotropic effects otherwise emerge [2,24].
As previously mentioned, the eigenvalues of the devia-

toric stress and strain-rate tensors are not always propor-
tional implying the tensors are not codirectional. The
breakdown of codirectionality is greatest at intermediate
θ_ϵ where θσ is smaller, as seen in Fig. 4. The maximum

FIG. 2. μðIÞ curves for the indicated values of μS (line type and
shape) in TXE (orange), pure shear (red), simple shear (green),
and TXC (blue). Fits from Eq. (8) are overlaid with exponents of
0.4, 0.7, and 0.9 for μS ¼ 0.0, 0.03, and 0.1, each using distinct
values of μc and A.
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FIG. 3. Strength ratio Ψ as a function of I for different μS.
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deviation is around 4° at I ¼ 10−3 and μS ¼ 0 but increases
with increasing I and μS up to 11° at I ¼ 0.1 and μS ¼ 0.3.
This effect originates from anisotropy in the contact net-
work and the fabric tensor [5,24] which is greater in
frictional systems [21]. In the TXE and TXC limits, this
misalignment is minimized at all I and μS and does not
exceed 1°. We therefore assume θσ and θ_ϵ are equivalent
and the two tensors are codirectional in these limits,
simplifying the following discussion of yield models.
This would imply σij and _ϵij are simply related by a
proportionality constant establishing two key limits for a
fully tensorial model.
Next we evaluate the shape of the steady-state envelope

of the stress ratio: μ as a function of θσ . Two such envelopes
at different values of I are rendered in Fig. 1. The symmetry
of the envelope reflects the equivalence of the three
principal stresses. At both I, μ is maximized in TXC
and monotonically decreases with θσ before reaching a
minimum at TXE. As I increases, not only does μ increase
but the surface becomes more triangular.
The dependence of μ on θσ is often described using

repurposed models of yield surfaces [52] which tradition-
ally define the initial yielding at small strains rather than the
stress envelope at constant values of I > 0 in steady-state
flow. In Mohr-Coulomb (MC) theory, a system flows if

ðσ1 − σ3Þ=ðσ1 þ σ3Þ ≥ sin½ϕðI; μSÞ� ð9Þ

where ϕ is the angle of internal friction [53]. This model
assumes the intermediate principal stress σ2 is irrelevant
producing a polygonal envelope with discontinuous deriv-
atives at θ ¼ �π=6 (Fig. 1). The Drucker-Prager (DP)
model alternatively assumes there is no dependence on the
type of flow and only requires that μ exceeds a threshold
μDPðI; μSÞ, producing a circular profile (Fig. 1) that is only
correct if Ψ ¼ 1. From our results and simulations in
Ref. [5], neither model is accurate although they bound

the actual response. Note that cohesive terms in yield
models were ignored for granular materials.
One segment of the envelope is plotted for I ¼ 10−3

and μS ¼ 0.0 in Fig. 5(a) and I ¼ 10−1 and μS ¼ 0.3 in
Fig. 5(b). These two sets of data are chosen as they
approximately maximize and minimize Ψ, respectively.
Overlaid are DP and MC curves. For DP, the critical stress
ratio μDP was simply set equal to μTXC. For MC, μTXC was
used to calculate ϕ [54], although one could calculate ϕ in
other flow types [55]. As before, neither model is accurate
but MC correctly predicts μTXE.
To account for this failure, more complex yield models

have been devised, including the William-Warnke (WW)
[12], Matusoka-Nakai (MN) [11], and Lade-Duncan (LD)
[13] models. The WW model interpolates between the
DP and MC models using an elliptical function and is fit
using values of μTXC and Ψ as described in Ref. [43]. The
MN and LD models use different combinations of stress
invariants to construct yield criteria that include the effect
of σ2. For the MN and LD models, we use a unified
formulation from Ref. [54] which is fit in terms of ϕ from
the MC model. Fits from these models are included
in Fig. 5.
All models are constrained to predict μTXC based on the

fitting protocol while only the WW model is also con-
strained to predict μTXE, having been fit with two param-
eters. Both the WW and MN models are fairly accurate
while the LD model overpredicts μTXE. Interestingly, this is
the opposite of yielding where MN underpredicts and LD
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FIG. 4. The difference in θ_ϵ and θσ as a function of θ_ϵ for the
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correctly predicts μTXE [5,19,20,55]. Although the WWand
MN models both deviate from the data, they may be
sufficiently accurate for continuum rheology models as the
root-mean-square error across Lode angles is generally less
than a few percentages of σTXC for all I and μS tested.
In this work, DEM simulations were used to explore

steady-state granular rheology over an extensive range of
friction values, strain rates, and flow types. A dataset of the
deviatoric stress tensor is available in the Supplemental
Material [56]. The type of flow has a significant effect on
granular rheology, an effect that grows with increasing
friction or inertial number. The dependence on the type of
flow is often simplified and described byMohr-Coulomb or
Drucker-Prager models although actual behavior lies in
between the extremes of these two models. There are other
granular features which can also affect the stress envelope
that should be studied such as other modes of interparticle
friction [51,57] and aspherical grain shapes [48]. Finally,
these results motivate the need to formulate tensorial
rheological models which describe the effect of flow type
[2,24,25] and parametrize them using bulk simulations
across flow types, along with simulations of flows in
complex geometries [27–30].
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