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We experimentally investigate the nature of 2D phase transitions in a quasi-2D granular fluid. Using a
surface decorated with periodically spaced dimples we observe interfacial tension between coexisting
granular liquid and crystal phases. Measurements of the orientational and translational order parameters
and associated susceptibilities indicate that the surface topography alters the order of the phase transition
from a two-step continuous one to a first-order liquid-solid one. The interplay of boundary inelasticity and
geometry, either order promoting or inhibiting, controls whether it is the granular crystal or the granular
fluid which makes contact with the edge. This order induced wetting has important consequences,
determining how coexisting phases separate spatially.
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An understanding of order-disorder phase transitions in
two-dimensional systems underpins research in a diverse
range of fields, e.g., nanomagnetism, low temperature
physics, quantum systems, statistical mechanics, soft mat-
ter, plasmas, and molecularly thin films [1–16]. However,
many fundamental aspects controlling 2D phase transitions
are still not well understood.
In 2D systems, the liquid-solid transition often proceeds

via an intermediate hexatic phase, which exhibits quasi-long-
range orientational order like a crystal, but short-range
positional order like a liquid [17]. Systems with hard discs,
are now believed to undergo a continuous crystal-hexatic
transition, followed by a first-order hexatic-liquid one [4,18].
Yet subtle changes in the interparticle potential can alter
this scenario, raising the question of how such theoretical
understanding maps onto real world systems [19].
Consequently, recent studies have explored how 2D phase
transitions are influenced by factors such as polydispersity,
interparticle potential, and shape [19–22]. Experiments have
also played a key role, confirming these results and inspiring
future research directions [23–25]. A common theme in
many of these studies is the idea that preventing 5=7
neighbor disclinations suppresses the hexatic phase leading
to a first-order liquid-solid phase transition.
A number of quasi-2D granular studies have observed

similarities between their melting behavior and that of hard
discs [26–30]. Surprisingly, in these nonequilibrium

systems, the crystal phase generally melts via the two-
step continuous Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) scenario [31]. However, if the particles are highly
inelastic, the liquid-solid phase transition may become first
order [29]. Particle inelasticity can also result in wetting by
the granular crystal phase. In equilibrium systems, the
preferential wetting of a foreign component by the ordered
or disordered phase can be governed by geometry rather
than interactions, controlling the spatial phase separation at a
first-order phase transition [15,32,33]. Though this has been
demonstrated in simulations of 2D lipid bilayers, such ideas
should be generic for order-disorder transitions, both equi-
librium and nonequilibrium [32,34].
Two-dimensional systems often interact with an external

potential, e.g., a surface, or an electric or magnetic field,
which can alter the nature of the observed phase transitions
[6,8,9]. Early 2D experiments found that the periodic
potential of a commensurate graphite substrate altered the
behavior of deposited noble gases [35,36]. More recently
colloidal experiments have demonstrated that a patterned
substrate can control where 2D crystal phases nucleate
[37,38]. Simulations of colloids and active matter have also
demonstrated how periodic structures can suppress the
hexatic and lead to strong phase separation [39,40].
Here we explore how controlling the topography of

the surface can be used to manipulate the nature of the
underlying liquid-solid transition. We also show how the
local structure of the boundaries can be used to spatially
control the wetting and phase separation.
Our experiment consists of a partial monolayer of

spherical particles (D ¼ 4 mm) on a horizontal metal plate.
The plate is subjected to vertical sinusoidal vibrations with
a dimensionless acceleration Γ ¼ Að2πfÞ2=g that can be
varied in increments of ΔΓ ¼ 0.013, where A is the
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amplitude and f is the frequency (50 Hz). As the particles
move across the surface in a quasi-2D layer they are filmed
from above using a camera (Panasonic HC-X1000, 50 fps).
The location of each particle is measured using the Hough
Circle transform (OpenCV) with a precision of ∼0.1 mm.
In addition to the particle area fraction, ϕ, the acceleration
represents an intensive control variable, playing a role
somewhat analogous to the temperature in an equilibrium
system. However, the nonequilibrium nature of our experi-
ment introduces important differences. For example, the
granular temperature [∼hv2i] in coexisting phases is not in
general equal as the temperature would be in an equilibrium
system [41]. Despite this caveat we will use the language
of heating (cooling) to describe increases (decreases) in the
acceleration for simplicity.
Two aluminum plates were prepared with different

surface topographies: the first flat and the second with a
triangular array of dimples (spacing L ∼ 4.8 mm, see
Supplemental Material [42]). Our experiment uses custom
3D printed boundaries that are hexagonal in shape
(apothem ¼ 100 mm). The boundaries are printed with
convex dimples on the internal faces with carefully chosen
spacings, to which we attach 4 mm nitrile particles.
We initialize an experiment with ϕ ∼ 0.82 by heating the

system to Γ ∼ 2.6. At this acceleration, the entire system
exhibits a disordered liquid state. We then slowly cool the
system at a rate of _Γ ¼ 0.0013 s−1. At Γ ∼ 2.0 a single
crystalline domain surrounded by a disordered phase
suddenly forms (see Supplemental Movie 1). Figure 1(a)
shows a boundary where the placement of boundary

particles is incommensurate with the observed crystal phase
on the dimpled plate (“orderphobic”). Although the region
of crystal fluctuates it never wets the boundary, separated
by a significant region of liquid phase.
The finite size of some experiments results in the edge

playing a significant role in the system’s behavior [43,44].
Yet even in larger systems the presence of in-plane
structures or defects may lead to some spatially varying
tendency for one or other phase [32,39,40,45]. The black
nitrile particles used throughout most of this study are
extremely inelastic (e ∼ 0.1, see Supplemental Material). In
Fig. 1(b) we compare these with more elastic polypropyl-
ene particles (e ∼ 0.6), though the boundary remains the
same. Upon cooling, a crystal phase with the same lattice
parameters still forms. One observes competition between
frustration of the crystal in the particle layers immediately
adjacent to the boundaries and a tendency for the liquid
phase to separate to the middle of the experiment. This
occurs no matter how slowly the system is cooled, so is not
a kinetically trapped configuration but a nonequilibrium
steady state.
In a quasi-2D granular experiment, energy enters the

system through particles interacting with the vibrating
base. At large ϕ energy is predominantly transferred and
dissipated through interparticle (epp) and particle-wall
(epw) collisions, rather than advection [43]. In Fig. 1(b)
epw ≪ epp, therefore the dissipative energy flux near the
wall is larger than in the center of the experiment, creating a
gradient in the granular temperature [43]. Since the higher
density crystal phase has the lower granular temperature,
this therefore forms at the edge, only frustrated in the first
few layers by the structure of the system boundary. In
contrast, in Fig. 1(a) the edge is preferentially wet by the
liquid phase. Here, epw ∼ epp resulting in a more spatially
uniform dissipation. This enables the boundary structure to
control the location of the different phases. Figure 1(c)
confirms this principle, using a boundary structure pat-
terned to be commensurate with the crystalline phase
(“orderphillic”). Now the crystal phase wets the bounda-
ries, reversing the spatial phase separation [cf Fig. 1(a)].
This demonstrates that in the absence of strong gradients in
dissipation, the wetting can be controlled purely by order or
disorder boundary conditions.
Making use of this fact we created a hybrid boundary,

where three sides (red) promote disorder and the remaining
sides (blue) have been designed to be orderphillic. As we
cool the system, the crystalline phase nucleates at the
orderphillic boundary and then grows until the contact line
becomes pinned at the orderphillic-orderphobic boundary
interface [see Fig. 1(d)]. Rotating the ring by 180°, also
results in the spatial reversal of the two phases. The liquid
and crystal phases are separated by a sharp stable interface
(>72 h) which undergoes capillarylike fluctuations, indi-
cating the presence of a significant interfacial tension
between the two phases.

FIG. 1. Wetting of boundary by coexisting phases on a dimpled
plate. (a) Inelastic particles with an order-phobic boundary—see
definition in text (epp ∼ epw). (b) Elastic particles with an order-
phobic boundary (epp ≫ epw). (c) Inelastic particles with an
orderphilic boundary (epp ∼ epw). (d) Inelastic particles with a
50∶50 orderphobic:orderphillic boundary (epp ∼ epw).

PHYSICAL REVIEW LETTERS 127, 268002 (2021)

268002-2



The presence of a stable interface between two coexist-
ing phases, is strongly indicative of a first-order phase
transition [46]. This is surprising as many experimental
studies on quasi-2D granulars have found a two-step
continuous transition between liquid and crystal [26–30].
However, highly inelastic particles, such as ours, have
previously been shown to undergo a first-order phase
transition [29]. It is important therefore to establish whether
the modified transition is due to the surface dimples or the
nature of the particles.
Using purely orderphobic boundaries [Fig. 1(a)] we

characterize the system’s response to cycles of cooling
and heating using both the flat and dimpled surfaces.
Starting with a uniform liquid state, ϕ ¼ 0.84, Γ ¼ 2.4
[Fig. 2(a)] the system is slowly cooled to an acceleration
of Γ ¼ 1.7. With the dimpled surface, a single crystalline
domain forms, separated from the boundaries due to the
wetting properties [Fig. 2(b)]. The system is then slowly
heated back to Γ ¼ 2.4. Each experiment is repeated
five times.
To characterize the state of the system, we use the global

orientational order parameter Ψ6. This is the average value
of the orientational order parameter ψ j

6 for each particle j
where ψ j

6 ¼ ð1=njÞ
Pnj

k¼1 e
6iθjk . nj is the number of nearest

neighbors determined by the Delaunay triangulation and
θjk is the angle of the vector from particle j to neighboring
particle k. Ψ6 is calculated using those particles away from
the edge [green line in Figs. 2(a) and 2(b)]. Figure 2(c)
shows, for the dimpled plate, how the value of Ψ6ðΓÞ
changes as the system is cooled (blue circles) and heated

(red diamonds) at a rate of _Γ ¼ 5.2 × 10−3 s−1. The
standard deviation of repeat experiments is indicated by
the shaded areas surrounding each curve.
When using the dimpled plate a pronounced hysteresis

is observed [Fig. 2(c)] which depends on the cooling rate
(Supplemental Fig. 3). The presence of hysteresis suggests
the order-disorder transition is first order [47]. To confirm
that the hysteresis is not due to the high particle inelasti-
city of our particles [29] but is caused by the dimpled
surface, we repeated the experiment using the flat plate.
Supplemental Fig. 4 shows that despite using inelastic
particles, experiments using the flat plate exhibited no
hysteresis. This indicates that the first-order characteristics
arise due to the dimpled surface topography.
In liquids, orientational and translational order are short

range, while in crystals they are both quasilong range. In 2D,
KTHNY theory predicts two separate transitions separated
by an intermediate hexatic phase characterized by quasilong
range orientational order, but short-range translational order
[31]. In contrast, in a one-step first-order phase transition the
growth of both types of order occurs together.
The local translational order of a 2D system is charac-

terized by the order parameter ψ j
T ¼ eiG⃗·r⃗j, where r⃗j is the

position vector of particle j and G⃗ is a primary reciprocal
lattice vector calculated from the Delaunay tessellation.
Calculating ψ j

6 and ψ j
T for each particle, we plot the

FIG. 2. Hysteresis while heating and cooling using a dimpled
plate. Example images (a) Γ ∼ 2.4. (b) Γ ∼ 1.7. ψ6 is calculated
using particles inside the green line. (c) Cooling (blue circles) and
heating (red diamonds) at _Γ ¼ 0.0052 s−1.

FIG. 3. First-orderphasetransitionwithdecreasingΓonadimpled
plate. Upper panels show a vector representation of the complex
order parameters (a) orientational—ψ6 and (b) translational—ψT at
Γ ¼ 1.9, cooling at _Γ ∼ 2.2 × 10−4 s−1 (see main text for defini-
tions). The presence of a single ordered domain separated from a
liquid phase is clearly visible. (c) The susceptibility χ characterizes
the size of fluctuations in each order parameter. Themaximum in χ6
(magenta)andχT (cyan)occurat thesamevalueofΓ indicatinga first
order phase transition.
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corresponding vector fields, Figs. 3(a) and 3(b), respectively.
Longer arrows in the orientational order vector reflect a more
ordered configuration, with the angle and color related to the
orientation of the measured hexagonal order. The length of
the translational order vector is always 1, while the angle and
color represent the degree of translational order, such that�π
corresponds to particles positioned at the expected lattice
points of the crystal. Plotting the vector fields allows us to
visually compare changes in the spatial correlations of each
order parameter for both the dimpled and flat plate (Figs. 3
and 4, Supplemental Movies 2 and 3).
Measurements of the spatial decay of correlations in

the order parameters are often used in simulations to
assess where transitions occur [5, 9, 11]. However, in
experiments, finite size and time effects can introduce
ambiguities. Co-existing crystal and liquid phases can also
result in a power-law decay that mimics a hexatic phase
[34]. To avoid these difficulties, we measured the suscep-
tibility of these order parameters [19, 34]. The orienta-
tional (translational) susceptibilities are defined as χ6ðTÞ ¼
hjΨ2

6ðTÞji − hjΨ6ðTÞji2, where Ψ6ðTÞ is the average order
parameter of the system in each case. The susceptibility
characterizes the size of the fluctuations in an order
parameter and exhibits a maximum at a phase transition.
For the dimpled plate, as the system is slowly cooled,

both orientational and translational susceptibilities exhibit

a single maximum at the same value of the acceleration,
Γ ∼ 1.9 [Fig. 3(c)]. At this critical acceleration a large area
of the orientational and translational vector fields suddenly
becomes spatially correlated, indicating the formation of a
crystalline nucleus [Figs. 3(a) and 3(b)]. This nucleus
remains stable with fluctuations both spatially and tempo-
rally synchronized (see Supplemental Movie 2). In addition
to our earlier results, this is compelling evidence that the
dimpled surface results in a first-order phase transition from
liquid-solid without an intervening hexatic phase.
Performing the same experiment using the flat plate, the

maximum in the fluctuations of each order parameter occur
separately, indicating two separate transitions for the orienta-
tional Γ ∼ 1.78 and the translational susceptibility Γ ∼ 1.57
[Fig. 4(c)]. As the system cools through these transitions one
observes a gradual increase in the length scale of spatial
fluctuations in the orientational order parameter [Fig. 4(a)].
The spatial length scale of the translational order parameter
also gradually grows as the system is cooled. However,
unlike the dimpled plate, the changes of both order param-
eters are continuous and there are no clear spatial correla-
tions between the two (see Supplemental Movie 3).
The presence of two distinct peaks suggests our experi-

ment on the flat plate undergoes a two-step transition
consistent with other quasi-2D granular studies [27–30]. In
addition, we were unable to find evidence of a finite surface
tension in this system. This suggests that in our experi-
ments on the flat plate, contrary to recent equilibrium
results on colloids [24], the liquid-hexatic transition is a
continuous two step transition. Importantly, in the context
of this work it confirms that the first-order phase transition
observed with the dimples does not merely strengthen a
first-order liquid-solid phase transition, ultimately arising
from particle inelasticity, but fundamentally alters the
nature of the transition.
In our experiments using a flat plate, highly inelastic

particles (e ∼ 0.1) resulted in a two-step phase transition.
This is different from the results of Komatsu et al. [29]
who found that the inelasticity of their particles (e ∼ 0.1)
resulted in a first-order phase transition. Subtle differences
in granular experiments can radically alter observed phase
behavior [48]. Indeed, the Komatsus experiment differs
from ours in having a confining lid. However, this raises
the question of whether inelasticity alone is sufficient to
change the order of the transition, something which
warrants further investigation.
The introduction of a dimpled surface breaks both the

orientational and translational symmetry of the 2D particle
fluid. However, this is only significant if the kinetic energy
at which the particles undergo a liquid-solid transition
is sufficiently small to be influenced by the underlying
topography. The situation is like equilibrium scenarios
involving noble gases on an underlying graphite lattice.
There the hexatic intermediate is not observed if the liquid-
solid transition occurs at thermal energies comparable to

FIG. 4. Two-step phase transition with decreasing Γ on a flat
plate. Upper panels show a vector representation of the complex
order parameters (a) orientational—ψ6 and (b) translational—ψT

at Γ ¼ 1.7, cooling at _Γ ∼ 2.2 × 10−4 s−1 (see main text for
definitions). No correlations are observed between the two vector
fields. (c) The susceptibility χ characterizes the size of fluctua-
tions in each order parameter. The maximums in χ6 (magenta)
and χT (cyan) occur at different values of Γ indicating a two-step
transition with an intervening hexatic phase.
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the substrate potential [49]. If the dimples are significant,
both orientational and translational ordering are affected
together resulting in a single transition. One might also
think that the creation of a pentagonal/heptagonal discli-
nation, essential to the KTHNY scenario, would be much
more difficult in the presence of a surface that encourages
hexagonal ordering.
In this Letter we have considered the importance of

orderphilic and orderphobic controlled wetting. We dem-
onstrated that a dimpled surface can result in a first-order
order-disorder transition. However, there is an important
additional consequence when these phenomena occur
together. In Fig. 1(d) the use of a hybrid boundary that
is orderphillic and orderphobic resulted in the symmetry of
the system being broken. The order induced wetting
therefore controlled the location of the resultant coexisting
phases. As a system phase separates during a first-order
order-disorder phase transition, order induced wetting can
therefore have a long-range effect, controlling the final
spatial composition of a system. Our work therefore
demonstrates experimentally the importance of topography
in controlling order induced interactions in 2D phase
transitions.
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