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Optical phenomena associated with an extremely localized field should be understood with consid-
erations of nonlocal and quantum effects, which pose a hurdle to conceptualize the physics with a picture of
eigenmodes. Here we first propose a generalized Lorentz model to describe general nonlocal media under
linear mean-field approximation and formulate source-free Maxwell’s equations as a linear eigenvalue
problem to define the quasinormal modes. Then we introduce an orthonormalization scheme for the modes
and establish a canonical quasinormal mode framework for general nonlocal media. Explicit formalisms for
metals described by a quantum hydrodynamic model and polar dielectrics with nonlocal response are
exemplified. The framework enables for the first time a direct modal analysis of mode transition in the
quantum tunneling regime and provides physical insights beyond usual far-field spectroscopic analysis.
Applied to nonlocal polar dielectrics, the framework also unveils the important roles of longitudinal phonon
polaritons in optical response.
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Introduction.—The research field of nano-optics has
flourished along with the development of concepts and
techniques to shrink light to scales well below diffraction
limit [1–5]. The subwavelength confinement primarily
results from plasmonic oscillations in metal nanostructures
[1,2] or phononic oscillations in polar dielectric nano-
materials [6,7]. Rapid advances in nanotechnologies have
allowed sculpting of structural morphology at nanometer
and even subnanometer scales [8–12], pushing field con-
centration toward the extreme [13]. Recent experimental
demonstrations suggest the optical field could even be
confined to cubic-nanometer volumes [14–17]. Along this
line of research, the field of nano-optics enters a new
regime, where classical local treatment of nanomaterials
becomes invalid. As an example, metallic gaps of a few
nanometers or smaller exhibit significant nonclassical
effects from electron nonlocality [9,18], spillover at metal
surfaces [19,20], Landau damping [21,22], and quantum
tunneling [23,24]. To describe these effects for plasmonic
nanostructures (∼100 nm) with tiny subfeatures by afford-
able computational resources, researchers have developed
various effective models at different levels of approxima-
tion [19–21,25–29]. For polar dielectric nanostructures,
nonlocal responses also have been treated to properly
describe the nanoscale physics [30–32].
While the system optical response could be computed by

discretizing Maxwell’s equations in media with a suitable
model, the interpretation of the physics and characterization
of light-matter interaction properties are not straightforward.
If the governing eigenmodes of the system were known, then
system response could often be conceptualized. Thus the

ability to obtain and orthonormalize the eigenmodes is
essential to promote the development of extreme nano-
optics. Both the openness and dissipative nature of the
system call for a quasinormal mode (QNM) analysis, which
has been established for classical local media [33–41]. There
have been few attempts to extend the QNM analysis to
include electron nonlocality under a hydrodynamic treatment
[42,43] and recently to incorporate a quantum hydrodynamic
model (QHDM) to study extremely localized modes [44].
However, none of the extensions have attempted to construct
an orthonormalization scheme for the QNMs, which is
challenging since the aforementioned quantum effects have
to be properly treated in the relation. Orthonormalization is
crucial as it enables constructing system response through
modal contributions for an arbitrary excitation and a direct
evaluation of mode volume of each mode to facilitate
quantum-optical studies [39–41,45,46].
Here we propose a generalized Lorentz model to

describe general nonlocal media and formulate source-free
Maxwell’s equations in the media as a linear eigenvalue
problem (LEVP) to canonically define the QNMs. Then we
introduce a general scheme to orthonormalize the eigenm-
odes and consequently establish a framework of canonical
QNM analysis. Taking QHDM for metal and nonlocal polar
medium for dielectric as examples, we present explicit
QNM formalisms in corresponding media. We reveal the
mode evolution process of a plasmonic dimer in the
quantum tunneling regime where classical local treatment
fails completely [21,47] and show a mode transition occurs
at a smaller gap than expected from extinction spectra.
Moreover, we employ QNM analysis to interpret the optical
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responses of a silicon carbide (SiC) nanosphere influenced
by longitudinal phonon modes. The examples cover a
broad range of situations in extreme nano-optics.
Generalized Lorentz model and LEVP formulation.—

Classical local optical responses of materials can often be
described by the Drude model or Lorentz oscillator model
of charged particles with single or multiple resonances [48].
Nonlocal responses of materials conspicuously manifest
via longitudinal density waves of the constituent charged
particles with a characteristic length much shorter than
vacuum wavelength [49]. Inspired by the nature of non-
locality as interaction induced by charge density gradient,
we propose a generalized Lorentz model (GLM) to incor-
porate various nonlocal responses under weak excitation

ρẌþ Γ̂x
_Xþ Θ̂xX ¼ ðqp=mpÞρE; ð1Þ

where X is the relative displacement, and the restoring and
damping force constants have become operators containing
spatial gradients. ρ is the stationary charge number density
normalized by the average number density (nu), and qp=mp

is the charge-mass ratio. A nonuniform ρ covers situations
of electron spillover [27], dynamic carrier control [50],
and gradient-alloyed semiconductors [51]. The material
response couples with Maxwell’s equations through elec-
tric polarization P ¼ nuρqpX. Assuming a time convention
of expð−iω̃tÞ, with ω̃ being a complex frequency, the
equation for P in frequency domain reads

iρε0ω2
pE − iρΘ̂P − iρΓ̂J ¼ ω̃J; ð2Þ

with the polarization current J ¼ −iω̃P, modified restoring
and damping force operators of Θ̂ ¼ ρ−1Θ̂xρ

−1 and Γ̂ ¼
ρ−1Γ̂xρ

−1, and where ωp ¼ ½nuq2p=ðmpε0Þ�1=2 resembles
the plasma frequency. Equations (1) and (2) establish a
Lorentz-type operator description of spatially dispersive
media E ¼ L̂P at optical frequencies, in parallel to the
usual electric susceptibility descriptions of χðω; r; r0Þ and
χðω; kÞ in real- and wave-vector–space forms, respectively
[52]. The GLM is basic since it is only based on the generic
nature of material nonlocality and Newton’s second law.
As listed in Table I and detailed in the Supplemental
Material [53], our GLM accommodates at least the
following nonlocal models: hard-wall hydrodynamic
model (HDM) [61], generalized nonlocal optical response

(GNOR) [62], QHDM [19–21], and nonlocal polar dielec-
trics (polar diel.) [32]. The local response approximation
(LRA) is a special case.
With the materials described by the GLM, the source-

free Maxwell equations can be formulated as a LEVP,

HΦ≡

2
666664

0 i
ε0ε∞

∇× 0 − i
ε0ε∞

− i
μ0
∇× 0 0 0

0 0 0 i

iρε0ω2
p 0 −iρΘ̂ −iρΓ̂

3
777775
Φ¼ ω̃Φ: ð3Þ

Here Φ ¼ ½E;H;P; J�T and ω̃ are the eigenvector and
eigenfrequency, respectively. ε0ε∞ is the nonresonant
background permittivity. In open space, the radiation
boundary condition [EðrÞ ∝ r−1eiω̃r=c as r → ∞] should
be imposed. Equation (3) is formally similar to the
auxiliary-field formulations developed for normal modes
[63] and extended to treat losses for QNM analysis [37].
The original contribution here lies in the promotion of
constants to operators Θ̂ and Γ̂ and the use of a nonuniform
ρ to describe general nonlocal responses and to develop a
corresponding canonical QNM theory.
General framework of canonical QNM analysis.—A

canonical QNM theory should include a scheme to ortho-
normalize the modes. For normal modes of a Hermitian
system, the normalization is carried out through an inte-
gration representing the field energy [63,64]. For QNMs,
the exponential divergence of the mode field in the far
field causes a difficulty for normalization. With continuous
efforts [33,36,37,39,65,66], the orthonormalization scheme
for QNMs in classical local media has been established
by resolving the divergence problem through a bilinear
form and a complex coordinate mapping technique [36,37].
However, the orthonormalization of QNM in nonlocal
media remains an untouched challenging problem. By
inspecting the orthonormalization formulas of Eq. (13)
in Ref. [63] for normal modes and of Eq. (4) in Ref. [37]
for QNMs, one sees each term in the expression for QNMs
also has a close link to the mode energy. Energywise,
for general nonlocal media, the difficulties are the proper
treatments of various internal interaction energies of
charged particles [19,20,32] and Landau damping as a
type of interaction energy [21,62]. Moreover, the nonuni-
form ρ induces another barrier since this means a position-
dependent plasma frequency and interaction energies.
Our GLM formulation enables us to get around all these
hurdles. Inspired by the close link to the field energy,
we start with the Poynting theorem [67] by evaluating the
difference between the powers input by two current sources
Ic ¼

R
V dr½ðiJs;2Þ� ·E1 −E�

2 · iJs;1�, where Ei is the
response field of source Js;i with i ¼ 1, 2. This leads to
the expression for the electromagnetic energy in general
nonlocal media [53]. Next we switch to the bilinear version

TABLE I. List of nonlocal models formulated in GLM [53].
B.C. stands for boundary condition.

Model ρ Θ̂ Γ̂ B.C.

LRA 1 ω2
0

γ /
HDM [61] 1 −β2∇ð∇·Þ γ n · P
GNOR [62] 1 −ðβ2 þ γDfÞ∇ð∇·Þ γ −Df∇ð∇·Þ n · P
QHDM ρðrÞ −Π̂ − Σ̂2 γ=ρ − Σ̂1

/
Polar diel. 1 Eq. (9) γd n · τ̄P
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(remove complex conjugate operations), e.g., Ic → Ib ¼
R
V dr½iJs;2 ·E1 − E2 · iJs;1�. By replacing the current sources with

the fields, the bilinear form of the Poynting theorem can be arranged as [53]

ðω1 − ω2Þ
Z
V
dr

�
ε0ε∞E2 ·E1 − μ0H2 ·H1 þ

P2 · Θ̂P1

ε0ω
2
p

−
J2 · J1
ε0ω

2
pρ

�

−
i

ε0ω
2
p

Z
V
dr½ðJ2 · Γ̂J1 − J1 · Γ̂J2Þ þ iω1ðP2 · Θ̂P1 − P1 · Θ̂P2Þ� − i

Z
V
dr∇ · ðE1 ×H2 − E2 ×H1Þ ¼ Ib: ð4Þ

Notice that the GLM formulation actually enables us to
establish an unconjugated Lorentz reciprocity theorem
[36,64] for general nonlocal media. We identify that Θ̂
and Γ̂ should be real and symmetric under transposition
from system energy considerations [53], such as the
positive definiteness of eigenenergies and the exponential
decay caused by coupling to a continuum. The symmetry
condition also implicates certain requirements on the
boundary conditions for P across material interface
[32,53,61]. Such symmetry condition is indeed satisfied
for all the situations of interest (see Supplemental Material
[53]). Consequently, the second integral of Eq. (4) van-
ishes. The last integral of Eq. (4) is normally converted to a
surface integral at infinity and effectively brought to zero
by using the perfectly matched layers [36]. However, a
nontrivial surface integral may arise when unconventional
electromagnetic boundary conditions are applied, e.g., in
Feibelman’s d-parameter model [26,28,29,68]. Although it
could be treated by following the general spirit of our
orthonormalization procedure [69], for the sake of clarity,
here we restrict it to volumetric media responses and thus
drop the term. Then the left-hand side of Eq. (4) is left only
with the first integral. Now considering the case that E1

and E2 are two sets of source-free (Js;1 ¼ 0 and Js;2 ¼ 0)
eigenmode fields, the right-hand side of Eq. (4) becomes
zero [36]. Thus, Eq. (4) directly leads to the orthonormal
relation ðω̃1 − ω̃2ÞððΦ̃2; Φ̃1ÞÞM ¼ 0, where the bilinear
form ððΨ2;Ψ1ÞÞM ≡ R

drΨT
2MΨ1 is defined with

M ¼ diagfε0ε∞;−μ0; ðε0ω2
pÞ−1Θ̂;−ðε0ω2

pρÞ−1g: ð5Þ

The normalization factors of QNMs in general nonlocal
media are immediately obtained as N 2

m ¼ ððΦ̃m; Φ̃mÞÞM.
M serves as a mapping operator such that the basis fΦ̃mg
and its dual basis fMΦ̃ng form a biorthogonal system.
The completeness of the system is discussed in the
Supplemental Material [53]. The GLM formulation and
orthonormal relation constitute the core of the general
framework of canonical QNM analysis and empower
an analytical description of optical responses with
numerically calculated QNMs. Analytical formulas can
be derived by applying the orthonormal relation in parallel
to the classical local theory [37,40,53]. Linear responses
can be expanded as Ψ ¼ P

m αmðωÞΦ̃m with coefficients

αmðωÞ ¼ ðω̃m − ωÞ−1ððΦ̃m;SÞÞM, where S is the excita-
tion source. The complex position-dependent mode volume
reads Vm ¼ 1=f2ε0n2d½ẼmðrdÞ · ud�2g, which is evaluated
for a dipolar emitter at rd along a unit vector ud in the
medium with a refractive index of nd.
General framework applied to metals and dielectrics.—

In the following, we take QHDM as the most sophisticated
nonlocal model for metal and nonlocal polar medium for
dielectric as two archetypal examples to explicitly work out
their QNM theories. When metallic nanostructures are
excited by light in the linear nonlocal response regime,
the electron gas experiences additionally a pressure force
arising from its internal energy [20] and a viscoelastic force
associated with Landau damping [21]. The two forces can
be formulated as operators acting on the induced polari-
zation P and current J. Then the governing equation of
QHDM can be written as [53]

iρε0ω2
pE − iρð−Π̂ − Σ̂2ÞP − iρðγ=ρ − Σ̂1ÞJ ¼ ω̃J; ð6Þ

where γ is the phenomenological damping rate. Comparison
of Eq. (6) with Eq. (2) immediately reveals Θ̂ ¼ −Π̂ − Σ̂2

and Γ̂ ¼ γ=ρ − Σ̂1. The constituting operators are

Π̂ ¼ ∇K1ð∇·Þ −∇∇ · K2∇ð∇·Þ; ð7aÞ

ðΣ̂1Þk̄k ¼ ˆ̄Dj̄½η0ðδk̄jδj̄k þ δk̄kδj̄jÞ þ ξ0δk̄ j̄δkj�D̂j; ð7bÞ

ðΣ̂2Þk̄k ¼ ˆ̄Dj̄½μ0ðδk̄jδj̄k þ δk̄kδj̄jÞ þ ζ0δk̄ j̄δkj�D̂j; ð7cÞ

where D̂ ¼ ∇ − ρ−1∇ρ, and ˆ̄D ¼ ∇þ ρ−1∇ρ. K1;2 and η0,
μ0, ξ0, and ζ0 are functions of ρ [53]. The operators comply
with the requirement of being real symmetric. The canonical
QNM theory for QHDM naturally follows from the general
framework. A direct evaluation of ððΦ̃m; Φ̃mÞÞM yields the
normalization factor

N 2
m¼

Z
dr2ε0ε∞Ẽm · Ẽm−

Z
dr½iγω̃m=ðε0ω2

pρÞ�P̃m · P̃m

−ð1=ε0ω2
pÞ
Z

drP̃m ·ð2Π̂þ2Σ̂2− iω̃mΣ̂1ÞP̃m: ð8Þ

In the expression, various nonlocal interactions are clearly
manifested. The second integral accounts for the effect of
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nonuniform ρ. The second line encapsulates various non-
local responses, such as the contributions of electron
pressure (Π̂), elastic (Σ̂2), and viscous (Σ̂1) effects.
In polar dielectrics, nonlocality originates from ionic

interactions through longitudinal phonons. By inspecting
the dynamic equation for lattice vibrations proposed in
Ref. [32], it amounts to Eq. (2) with ρ ¼ 1, Γ̂ ¼ γd, and

Θ̂ ¼ ω2
T þ β2L∇ð∇·Þ − β2T∇ × ð∇×Þ; ð9Þ

where ωT and βT (βL) are the transverse optical phonon
frequency and velocity of the transverse (longitudinal)
phonons, respectively. The last two terms in Eq. (9) follow
from the divergence of the stress tensor τ̄, i.e.,
∇ × τ̄ ¼ ðΘ̂ − ω2

TÞP. The nonlocal force operator is real
symmetric with a required boundary condition n · τ̄P ¼ 0
[32]. Therefore, our general framework directly leads to a
QNM theory for nonlocal polar dielectrics. The detailed
derivations and numerical implementation of the two
exemplary theories are provided in the Supplemental
Material [53].
Mode transition in quantum tunneling regime.—A met-

allic nanosphere dimer with an ultrathin gap is an excellent
platform for studying intriguing quantum plasmonic phe-
nomena such as quantum electron tunneling [23–25,70–72].
Considerable experimental and theoretical endeavors focus
on the plasmon mode transition behavior as the gap
gradually closes, but have not reached a complete consensus.
A plausible reason is that the resonance information is
indirectly retrieved from the far-field extinction or scattering
spectra, which strongly depend on the illumination and
detection schemes. Our QNM theory provides an unprec-
edented opportunity to directly uncover the path of mode
evolution in the quantum tunneling regime. Here we employ
the QHDM-based QNM theory for the investigation, since
QHDMs with recent developments [19–21] can self-
consistently describe various nonlocal and quantum effects
for nanospheres down to 1 nm diameter [21] and to the
quantum tunneling regime, where classical local treatment
fails completely [21,47]. As shown in Fig. 1(a), we study a
gold nanosphere (50 nm diameter) dimer and plot the
extinction spectrum evolution map obtained from full
numerical QHDM-based simulations [53]. The involved
bonding plasmon (BP) and charge transfer plasmon
(CTP) resonances are indicated. The first CTP is beyond
1 μm and not shown here. The map of extinction spectra in
Fig. 1(a) is in excellent qualitative agreement with the
experimental spectra in Fig. 2 of Ref. [23]. As shown in
more detail in the Supplemental Material [53], good quanti-
tative agreements are found by modeling the same geometry
and illumination scheme as in Ref. [23]. Then we perform
QNM analysis to identify the eigenmodes of the system.
As a benchmark for the orthonormal relation, we reconstruct
the extinction spectrum for d ¼ 0.3 nm. Figure 1(b) displays

a perfect agreement between the full simulation and
reconstruction with the contributions of 30 QNMs.
Previous far-field spectroscopic studies [23] recognize

the onset of quantum tunneling at the gap of 0.3 nm, which
seems to be confirmed by our extinction spectra in Fig. 1(a)
(green dashed line). However, based on our QNM analysis,
the mode evolution paths on the complex wavelength plane
in Fig. 1(c) indicate that the mode transition occurs at a
smaller gap of 0.2 nm, coincident with the kink on the
BP1-CTP2 dashed trace in Fig. 1(a). It is better evidenced
by the modal current profiles in Fig. 1(d). On the threshold,
current at the gap center emerges and, concomitantly, the
mode order changes. The mode has the smallest volume
Vmin, as shown in an inset of Fig. 1(c) [53]. Despite the
accompanying lowest quality factor, we emphasize that
the optical responses under far-field excitation can still be
conceptualized with the mode. The extinction spectrum
around the resonance (680 nm) are dominated by the BP1-
CTP2 mode. The reconstruction of the spectrum in terms of
modal contributions at d ¼ 0.2 nm and the mode profile

FIG. 1. (a) Extinction spectrum evolution with the gap size d
for a gold nanosphere dimer. The geometry and illumination
scheme are illustrated in the inset. The white dashed traces
indicate the real part of the resonant wavelengths obtained from
QNM analysis. (b) QNM reconstruction of the extinction
spectrum for d ¼ 0.3 nm. F.S. stands for full simulation. (c) Mode
evolution paths on the complex wavelength plane. The insets
display minimum BP1-CTP2 mode volume and quality factor as
functions of d. (d) The dominant component of BP1-CTP2 mode
current density ImfJzg at various gap sizes.
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evolution for high-order modes are provided in the
Supplemental Material [53].
QNM analysis of a nonlocal polar dielectric

nanoparticle.—The optical responses of polar dielectrics
are classically characterized with the Fröhlich resonance. As
the particle size shrinks to nanometer scale, nonlocal effects
owing to longitudinal phonons become significant [32,73].
Here we perform QNM analysis for a SiC nanosphere
(10 nm diameter) and unveil how the nonlocal responses
are dictated by longitudinal phonon polaritons. First, the
QNMs of the nanosphere are arranged according to the
complex eigenfrequency as in Fig. 2(a). Consistent with
the dispersion of longitudinal phonons [74], the eigenfre-
quencies decrease with the mode order. Meanwhile, the
imaginary parts are essentially constant Imfω̃mg ¼ −γd=2,
which implies the electric fields of these QNMs are confined
inside the nanosphere and largely longitudinal [left panel of
Fig. 2(d)]. Their magnetic fields could be dipolar (D),
quadrupolar (Q), octupolar (O), etc. [right panel of Fig. 2(d)].
Assuming a plane wave illumination, the extinction

spectra are calculated for both nonlocal and local
responses. As shown in Fig. 2(b), the nonlocal corrections
introduce extra resonances and can be perfectly recon-
structed with modal contributions from 11 QNMs, con-
firming the validity of our orthonormal relation for nonlocal
polar dielectrics. For the far-field plane wave excitation,
only the dipolar modes are excited. By placing an electric
dipole 5 nm away from the nanosphere, a wealth of types of
modes could be excited. Figure 2(c) shows the radiation

enhancement spectrum, which includes contributions from
various dipolar, quadrupolar, and octupolar modes. For
clarity, we examine more closely the far-field response in
Fig. 2(b) to showcase the intriguing implications from our
nonlocal QNM analysis. For the major resonance peak, the
responsible mode with nonlocal corrections is D5, which
has a completely different electric field distribution from
that of mode D of local response, although their magnetic
fields are essentially the same as shown in Fig. 2(d).
Moreover, instead of having a broad single resonance for
the local case, the nonlocal spectral response is essentially
composed of the individual Lorentzian spectra of the
involved QNMs, which have distinct electric field profiles.
Conclusion.—We have formalized a theoretical frame-

work of QNM analysis for general nonlocal media under
linear mean-field approximation. The proposed GLM
incorporates various kinds of specific nonlocal and quan-
tum effects into a concise form and leads to a canonical
definition of QNMs and to the construction of an ortho-
normalization scheme. The exemplary embodiments for
QHDM and nonlocal polar dielectrics are explicitly shown.
We applied the QHDM-based QNM analysis to reveal that
the intrinsic bonding-to-tunneling mode transition in the
quantum tunneling regime occurs at a smaller gap than
inferred from far-field spectroscopic studies. Our work
greatly facilitates analytical formulations of the electro-
magnetic responses in general nonlocal media and expands
the application scenarios of QNM analysis for, e.g., Raman
spectroscopy [14], photon emissions from tunneling devi-
ces [53,75] and molecular junctions [76], and single photon
emission from nanocavities [77]. Therefore, we hope it
constitutes a valuable asset for nano-optics.
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