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Topological magnonic materials have attracted much interest because of the potential for dissipationless
spintronic applications. Pyrochlore iridates are theoretically regarded as good candidates for designing
topological magnon bands. However, experimental identification of topological magnon bands in
pyrochlore iridates remains elusive. We explored this possibility in Y2Ir2O7 using Raman spectroscopy
to measure both the single-magnon excitations and anomalous phonon shifts. From the single-magnon
energies and tight-binding model calculations concerning the phonons, we determined the key parameters
in the spin Hamiltonian. These confirm that Y2Ir2O7 hosts a nontrivial magnon band topology distinct from
other pyrochlore iridate compounds. Our work demonstrates that pyrochlore iridates constitute a system in
which the magnon band topology can be tailored and that Raman spectroscopy is a powerful technique to
explore magnon band topology.
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Topological magnon band (MB) with linear band
crossing protected by symmetries can have nonzero
Berry curvature which produces the thermal Hall effect
[1,2]. Because of the charge-free character, topological
magnons can enable dissipationless transport in insulating
magnets [1,3]. Thus, topological magnonic materials are
of fundamental interest and highly desired for developing
high-efficiency and low-cost spintronic devices [4,5].
Topological MB crossing, which can form a Weyl point,
has been proposed to appear in limited systems of pyro-
chlore ferromagnets or noncentrosymmetric antiferromag-
nets [6,7]. While topological MB crossing was observed in
a three-dimensional collinear antiferromagnet [5,8], exper-
imental evidence of topological MB has rarely been
reported in other materials.
The pyrochlore iridates R2Ir2O7 (R ¼ Y, rare-earth ions)

offer an excellent opportunity to pursue the creation of
topological MB. By manipulating small structural details
with R, the magnetic interactions can be fine-tuned to
create the desired topological phase. Using linear spin-
wave theory (LSWT) calculations, Hwang et al. suggested
a topological MB phase diagram of R2Ir2O7 [9]. Their
calculations showed that the four lowest-lying MBs have
single and triple degeneracies at the Γ point. As shown in
Fig. 1(a), when the triply degenerate state is located at
lower energy, the MBs cross at a k point along the ΓX lines
which is protected by T̄d symmetry; we will call this a
crossing MB (c-MB) phase. Conversely, when the triply
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FIG. 1. (a)–(b) Dispersions for crossing magnon band (c-MB)
and noncrossing magnon band (n-MB). (c) Magnon band topo-
logy phase diagram for some pyrochlore iridates R2Ir2O7

(R ¼ Y, Tb, Eu, Sm, and Nd). We note that D=J ¼ 0.28 in
Ref. [9] is the boundary between the c-MB and n-MB topology,
where the Dzyaloshinskii-Moriya interaction and the Heisenberg
interaction are denoted by D and J, respectively. Red dots are
D=J values obtained from resonant inelastic x-ray scattering
experiments and black diamonds are parameters from quantum
chemistry calculations (QCC). The parameters used for this phase
diagram are listed in the Supplemental Material [10]. Our Raman
data (blue star) suggest Y2Ir2O7 is in the c-MB phase, contrary to
the result of the QCC.
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degenerate state is located at higher energy, the MBs can-
not make any crossing [Fig. 1(b)]; we will call this the
noncrossing MB (n-MB) phase.
Hwang et al. also found that the ratio between

Dzyaloshinskii-Moriya interaction (D) and Heisenberg
interaction (J) plays a key role in controlling MB topology
[9]. When D=J < 0.28, R2Ir2O7 will have n-MB. In
contrast, when D=J > 0.28, R2Ir2O7 will have c-MB
[10]. The distinct MB topology can lead to differences
in thermal Hall effects [9] and offers a new means to tune a
system through a topological phase transition.
To search for this intriguing topological phase transition,

accurate values of D=J in real R2Ir2O7 systems must be
determined. Thus far, it has been difficult to obtain accurate
J and D values of R2Ir2O7. Because Ir4þ ions strongly
absorb neutrons, inelastic neutron scattering cannot be
applied to pyrochlore iridates. For resonant inelastic
x-ray scattering (RIXS) [23–25], the resolution of this
experimental technique is 25–28 meV, which is much
larger than the predicted energy difference of about
4 meV between the nondegenerate and triply degenerate
MBs at the Γ point in R2Ir2O7 [9,23]. Theoretical quantum
chemistry calculations (QCC) have been widely applied,
but their calculational results are highly dependent on the
Ir─O─Ir bond-angle (θ) [26]. We note that all reportedD=J
values for R2Ir2O7 are located at the n-MB phase
[Fig. 1(c)], suggesting the absence of the topological phase
transition in R2Ir2O7. In addition, the D=J values of each
technique do not show systematic evolution with the
variation in radius of rare-earth ions.
Here, we describe the use of Raman spectroscopy to study

magnetic interactions of Y2Ir2O7 which shows all-in-all-out
(AIAO) antiferromagnetic (AFM) order below TN ¼
170 K. Upon cooling into the AIAO state, two magne-
tic excitation peaks emerge at 231 cm−1 (28.6 meV) and
277 cm−1 (34.4 meV). In combination with tight-binding
model calculation, we found that these Raman peaks
originate from the single-magnon scattering (1MS), rather
than the two-magnon scattering (2MS) that commonly
appears in most magnetic materials [26]. We also observed
an abrupt phonon peak shift of the A1g mode ∼2.3 cm−1
below TN, implying spin-phonon coupling (SPC). Analysis
of SPC and single-magnon excitations allowed us to
accurately determine the D=J value: D=J ∼ 0.60 (J ¼ 15.1
and D ¼ 9.0 meV) for Y2Ir2O7. Our results suggest that
Y2Ir2O7 is the first candidate for c-MB topology among
noncollinear AFM R2Ir2O7 [Fig. 1(c)]. The results further
reveal that the pyrochlore iridate is a unique system where
the magnon band topology can be readily tuned, which is a
challenging task in electronic counterparts [27].
Figure 2(a) shows the Raman spectrum of Y2Ir2O7 at

10 K. Six Raman-active phonon modes were observed,
consistent with factor group analysis for the Fd-3m space
group [28,29]. We performed density functional theory
(DFT) calculations to assign the symmetry of phonon

modes [10]. The calculated and experimental phonon
frequencies showed good agreement, allowing assignment
of the observed phonon modes [10]. The Raman spectra of
Y2Ir2O7 showed two peaks below 300 cm−1 marked asM1

and M2, which could not be assigned as phonon modes.
These well-resolved sharp peaks were located at 231 cm−1
(28.6 meV) and 277 cm−1 (34.4 meV) for M1 and M2,
respectively. By changing the laser source from 532 to
671 nm, we confirmed that the M peaks originated from
Raman excitation, rather than photoluminescence [10]. The
AIAO magnetic ordering protects the cubic lattice sym-
metry of R2Ir2O7 [30], suggesting that the M peaks are not
associated with zone-folded phonon in the AFM state. In
addition, previous x-ray and neutron diffraction studies of
R2Ir2O7 found no structural phase transitions [31,32],
confirming that the M peaks are irrelevant to lattice
distortions.
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FIG. 2. (a) Raman spectra of polycrystalline Y2Ir2O7 at 10 K.
The frequencies of the six Raman-active phonons are calculated
using density functional theory calculations (dashed lines). M1

andM2 correspond to magnetic excitations. (b) Temperature (T)-
dependent Raman spectra of Y2Ir2O7. (c) T-dependent Raman
spectra of magnetic excitation peaks in Y2Ir2O7. For clarity, each
spectral intensity IT at various T is subtracted by the intensity of
reference spectrum I300 K at 300 K. (d) T dependence of the
integrated intensity of the magnetic excitations in the range of
208 and 314 cm−1 (black squares) and magnetic susceptibility χm
measured at H ¼ 0.1 T after zero-field cooling (red circles). For
integration, we subtracted the 300 K spectra from the spectra at
the other temperatures and integrated them in the energy range
between 208 and 314 cm−1.
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To further investigate the nature of the M peaks, we
studied the temperature (T) dependence of the Raman
spectra of Y2Ir2O7 [Fig. 2(b)]. We found that the M peaks
are visible only in the AFM state. The evolution of the M
peaks is more clearly visible in the difference spectra
IT-I300 K shown in Fig. 2(c). As T increases from 10 to
150 K, the M peaks are significantly suppressed and
become indistinguishable above TN . Figure 2(d) shows
the T-dependent integrated intensities from the spectra
IT-I300 K of the M peaks (black squares) and magnetic
susceptibilities (red circles). The integrated intensities of
both peaks reveal anomalies at TN , suggesting a magnetic
origin of the M peaks.
The magnon dispersion of the AIAO magnet has been

studied extensively from a theoretical perspective [9,33].
The fourfold-degenerate magnon dispersion in R2Ir2O7 is
strongly affected by the Dzyaloshinskii-Moriya interaction,
which exhibits a gap at the Γ point. Figure 3(a) summarizes
the information related to MB for Sm2Ir2O7, Eu2Ir2O7, and
Y2Ir2O7. The red-colored regions indicate the bandwidth of
MB from RIXS studies [23–25]. They indicate that the MB
gap energies of Sm2Ir2O7 and Eu2Ir2O7 are ∼25 and
∼28 meV, respectively. To the best of our knowledge,
no experimental information concerning MB is available
for Y2Ir2O7 [31,34]. The energies of magnetic excitations
of Sm2Ir2O7 and Eu2Ir2O7 from our Raman data are
indicated by black solid lines in Fig. 3(a) [10]. Previous
Raman studies of Sm2Ir2O7 and Eu2Ir2O7 also reported the
magnetic excitation peaks at nearly the same energies
[10,28,29]. The energies of the magnetic excitations of

Sm2Ir2O7 and Eu2Ir2O7 are found to be close to their
magnon dispersion gap energies [10,23–25]. These simi-
larities suggest that the Raman peaks of Sm2Ir2O7 and
Eu2Ir2O7 may correspond to 1MS.
Similarly, we attribute theM peaks in the Raman spectra

of Y2Ir2O7 to 1MS. Note that, in magnetic materials,
Raman spectra usually show 2MS peaks, which are gene-
rally much stronger than 1MS peaks [35]. However, as
shown in Figs. 3(a)–3(b), the resonance energies of the M
peaks of Y2Ir2O7 are close to the gap energies in the
magnon dispersion of Sm2Ir2O7 and Eu2Ir2O7 as well as to
the energies of 1MS in their Raman spectra [23–25,28,29].
In addition, theM peaks are much sharper (∼17 cm−1) than
are the 2MS peaks (250–400 cm−1 for R2Ir2O7) [20,36].
Symmetry (Raman tensors) analysis of R2Ir2O7 based on
the pseudospin Jeff ¼ 1=2 configuration further supports
the conclusion that the M peaks are attributable to
1MS [10,37].
In general, the magnetic Hamiltonian for AIAO pyro-

chlore iridates can be written as

Hspin ¼
Xnn

ij

½JSi · Sj þDijðSi × SjÞ þ Si ·Aij · Sj�; ð1Þ

where J and D are the Heisenberg and Dzyaloshinskii-
Moriya interactions, respectively. Magnetic pyrochlore
materials can also have anisotropic exchange interaction
A. Because A has values in an order of magnitude smaller
than J and D in R2Ir2O7 [10], we will focus on the J and D
values in this Letter. Using Eq. (1), Hwang et al. derived the
MB dispersions of R2Ir2O7 [9]. At the Γ point the MB has
triply and singly degenerate states with Et and Es,
respectively. Et and Es can be expressed analytically in
terms of J and D:

Et ¼ 2S
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If theM peaks originate from the 1MS Raman process, they
should correspond to Es and/or Et excitations. However,
there are two possible scenarios for 1MS: Es is smaller or
larger than Et. We considered both cases: Model A
(M1 ≡ Es,M2 ≡ Et) and model B (M1 ≡ Et, M2 ≡ Es).
Using Eqs. (2) and (3), we determined that J ¼ 37.6 and
D ¼ 7.0 meV for model A (and J ¼ 15.1 and D ¼
9.0 meV for model B). The magnon dispersions for models
A and B are plotted in Fig. 3(b). The two models show very
different MB dispersions: Model A indicates an n-MB
phase and model B indicates a c-MB phase. The D=J
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FIG. 3. (a) Magnetic excitation energy diagram for R2Ir2O7.
Black lines indicate the energies of M1 and M2 from our Raman
experiments (for Sm2Ir2O7 and Eu2Ir2O7, see Supplemental
Material [10]). The magnon bandwidths obtained from the RIXS
measurements are shaded in red [23–25]. (b) Magnon dispersion
of Y2Ir2O7 based on the linear spin-wave theory calculations with
two Hamiltonian models in this work: Model A, where J ¼ 37.6,
D ¼ 7.0 meV and nondegenerate ðtrianglesÞ≡M1, triply degen-
erate ðcirclesÞ≡M2 energy; and model B, where for J ¼ 15.1,
D ¼ 9.0 meV with triply degenerate ¼ M1, nondegenerate ¼
M2 energy.
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values of models A and B are approximately 0.18 and 0.60,
respectively.
To determine which of these models is correct, we

investigated the T dependence of Raman-active phonon
peaks. Our earlier infrared (IR) spectroscopy study of
Y2Ir2O7 indicated that the three phonon modes show
anomalous softening below TN, attributable to SPC [38].
As shown in Fig. 4(a), our Raman spectra of the A1g mode
show similar phonon softening below TN [39]. The atomic
displacement of the A1g mode is depicted in Fig. 4(b). To
obtain quantitative information, we fit the A1g mode by
using the Lorentzian line shape [10]. The T evolution of the
Raman shift is shown in Fig. 4(c). Above TN , the A1g

phonon frequency follows a monotonic blueshift [blue
solid lines in Fig. 4(c)] with decreasing T due to the
anharmonic decay process, which can be described by
ωT ¼ ω0 þ Að1þ f2=½expðhω0=2kBTÞ − 1�gÞ where ω0

and A are constants [40]. Below TN, in contrast, the

frequency of the A1g mode significantly deviates from
the thermal behavior and softens with decreasing T. Such T
evolution implies strong SPC. The full width at half
maximum of the A1g mode also exhibits a kink at TN ,
as shown in the inset of Fig. 4(c). We define the peak shift
Δω ¼ ω0 − ω10 K, where ω0 is the constant obtained
during the fitting process; experimental Δω for the A1g

mode is ∼2.3� 0.3 cm−1.
To extract the J and D values from the anomalous

phonon softening, we calculated the J- and D-dependent
Δω using tight-binding model calculations [38]. Our
calculations predict that the Dzyaloshinskii-Moriya inter-
action is the main contributor to phonon softening below
TN [10], consistent with the conclusion from the T
dependence of IR-active phonons of Y2Ir2O7 [38].
Figure 4(d) shows a contour plot of the calculated peak
shift Δω of the A1g phonon mode for various J and D
values. The solid line and two dashed lines display the J
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and D values, which can produce the peak shift with error
bars: Δω ¼ 2.3� 0.3 cm−1. The gray circles indicate the J
and D values obtained from Eqs. (2) and (3) for models A
and B. Importantly, only model B (i.e., J ¼ 15.1 and
D ¼ 9.0 meV) can explain the experimental phonon shift.
The calculated Δω values from models A and B are
approximately 5.0 and 2.6 cm−1, respectively. Therefore,
we concluded that the MB dispersion of Y2Ir2O7 can be
described by model B with c-MB topology.
To further confirm that model B correctly describes the

magnon dispersion, we performed tight-binding model
calculations on the Ir─O─Ir angle (θ) dependence of J
and D in R2Ir2O7. Electron hopping between the nearest
neighbor Ir ions contributes to J and D. In R2Ir2O7, the
hopping integral depends on θ, thus affecting the J and D
values. We used the θ values of the R2Ir2O7 compounds
from the previous x-ray diffraction (XRD) and neutron
diffraction studies [31,41]. Details of the θ dependence of J
and D are provided in Ref. [38].
In Figs. 4(e)–4(f), we compare the calculational results

for Y2Ir2O7, Eu2Ir2O7, and Sm2Ir2O7 with those from
previous RIXS studies [23–25]. The values of θ, J, and D
are summarized in the Supplemental Material [10]. The
empty and solid stars correspond to J and D values for
models A and B, respectively. The calculations of the θ
dependence of J andD indicate that model B (J ¼ 15.1 and
D ¼ 9.0 meV) can appropriately represent the magnetic
excitations in Y2Ir2O7.
The D=J curve generated from the θ-dependent J and D

is shown in Fig. 4(g). The D=J curve shows a systematic
dependence on θ: as θ decreases, D=J increases. The
trigonal distortion of the oxygen octahedra in R2Ir2O7 is
larger at smaller θ, demonstrating that the trigonal dis-
tortion enhances the Dzyaloshinskii-Moriya interactions
between the Ir4þ ion network. More importantly, the D=J
curve suggests that a topology change in MB can occur in
R2Ir2O7 [9]. Recall that D=J ¼ 0.28 is a boundary sepa-
rating n-MB (light blue area) and c-MB (yellow area). The
D=J ¼ 0.60 of Y2Ir2O7 in this work indicates that Y2Ir2O7

is the first material that could have c-MB among pyrochlore
iridates. This finding also demonstrates that the topological
phase of the MB can be easily tuned in R2Ir2O7, which has
been demanding in electronic materials [42,43]. Further
investigations are required concerning MB and related
physical properties, such as thermal Hall conductivities.
Through a combined Raman spectroscopy and tight-

binding model calculation study, we showed that Y2Ir2O7

hosts the crossing magnon band topology for the first time.
The analyses on the resonance energies of the single
magnon excitations and the anomalous phonon softening
in the antiferromagnetic phase led to a unique determi-
nation of the magnetic interaction parameters of R2Ir2O7.
The values of the magnetic interaction parameters from our
analyses indicate that Y2Ir2O7 has the crossing magnon
band and Sm2Ir2O7=Eu2Ir2O7 shows noncrossing magnon

bands. The distinct magnon band topologies are expected
to manifest themselves in the thermal Hall effect. It is worth
performing magnon thermal Hall measurements to confirm
the rich phases of the nontrivially topological properties
R2Ir2O7. Our result indicates that the pyrochlore iridates
R2Ir2O7 is a unique system where the magnon band
topology can be tuned, which has been challenging in
topological electronic systems. Our study also suggests that
Raman spectroscopy is a simple and powerful tool to
investigate magnon excitations and spin Hamiltonian of the
AIAO 5d pyrochlore iridate R2Ir2O7.
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