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Even as the understanding of the mechanism behind correlated insulating states in magic-angle twisted
bilayer graphene converges toward various kinds of spontaneous symmetry breaking, the metallic “normal
state” above the insulating transition temperature remains mysterious, with its excessively high entropy and
linear-in-temperature resistivity. In this Letter, we focus on the effects of fluctuations of the order
parameters describing correlated insulating states at integer fillings of the low-energy flat bands on charge
transport. Motivated by the observation of heterogeneity in the order-parameter landscape at zero magnetic
field in certain samples, we conjecture the existence of frustrating extended-range interactions in an
effective Ising model of the order parameters on a triangular lattice. The competition between short-
distance ferromagnetic interactions and frustrating extended-range antiferromagnetic interactions leads to
an emergent length scale that forms stripy mesoscale domains above the ordering transition. The gapless
fluctuations of these heterogeneous configurations are found to be responsible for the linear-in-temperature
resistivity as well as the enhanced low-temperature entropy. Our insights link experimentally observed
linear-in-temperature resistivity and enhanced entropy to the strength of frustration or, equivalently, to the
emergence of mesoscopic length scales characterizing order-parameter domains.
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Introduction.—With rapid experimental developments
on magic-angle twisted bilayer graphene (MATBG) report-
ing spin, valley, and Chern-number polarization at various
integer fillings of the low-energy flat bands [1–5], a new
understanding is emerging that the correlated insulating
states at integer fillings [4–6] actually arise from isospin
polarization (ISP) of gapped Dirac fermions [7]. On the
other hand, experiments have also found that, upon heating,
these insulators with ISP melt into a “normal” state with
resistivity linear in temperature T [8–11] [Fig. 1(a)].
Further deepening the mystery is the presence of a large
entropy at temperatures above the insulating transition,
which is strongly enhanced nonlinearly at low temperatures
and rapidly quenched by an applied in-plane magnetic field
[Fig. 4(a)]. Despite much theoretical progress on under-
standing the nature of correlated insulators with ISP in
MATBG [12–19], insight into how these experimentally
observed features in the normal state arise from ISP states
with gapped Dirac physics remains lacking.
“Strange metal” behavior, with T-linear resistivity, is

observed in many strongly correlated materials [20–22]
and has long remained mysterious, as such temperature
dependence is inaccessible from the limit of weakly
interacting quasiparticles [23]. Recent studies of models
with T-linear resistivity have shed much light on this
phenomenon [24–36]. A comparative study of solvable
models with local self-energy [37] identified at least two
distinct mechanisms toward T-linear resistivity at temper-
atures below the interaction in the “incoherent” limit of

perturbative electron hopping: a Mott-like mechanism
where electronic transitions are confined to narrow bands
separated by interaction scales and a Sachdev-Ye-Kitaev–
like mechanism where the electrons are quantum critical
and the T scaling of resistivity is a function of critical
exponents. A study of a modified Hubbard model with
perturbative hopping, where the ground-state degeneracy
was broken by an extended-range interaction [27,33], also
reported T-linear resistivity. These recent advancements in
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FIG. 1. (a) MATBG dc resistivity for various fillings from ν ¼
−2.4 (blue) to ν ¼ −1.5 (red). Plot adapted fromRef. [9]. (b) Ising
effective model dc resistivity (3) for various values of frustrating
extended-range interaction J2. The vertical axis is in units of
ρ0 ¼ ℏ=ðevmDÞ2, where vmD is the effective Dirac velocity. In both
(a) and (b), the progression of colors from yellow to blue
indicates the lowering of the tendency to order into an insulating
state at low T, although the parameters tuned (filling vs Ising
couplings, respectively) are different.
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understanding T-linear resistivity provide an ideal setting
from which strange metal behavior in MATBG can be
studied.
In this Letter, we capture the anticipated role of fluctua-

tions of mesoscale domains of correlated insulator order
parameters containing ISP [3] by modeling these fluctua-
tions within an effective Ising model with frustration. The
fluctuations affect transport through coupling to the itin-
erant fermions. Inspired by the observations of the (gapped)
“Dirac revival” [38], we treat the itinerant fermions as Dirac
fermions locally gapped by the order parameters [38]. We
model fluctuations in local ordering and ISP tendencies
using classical Monte Carlo simulations. We then calculate
the temperature dependence of the resistivity and entropy
and compare our findings with recent observations.
Model.—At integer fillings ν, we capture the effect of the

insulating order parameters with ISP at the mean-field level
as a gap-inducing potential imposed on a Dirac fermion
system, i.e., a mass term, which may generically arise from
integrating out long-range Coulomb interactions [12–19].
Such mass terms can have complicated momentum depend-
encies in the Brillouin zone [17]. However, in this Letter,
we will keep the form of the mass terms as simple as
possible and write the mass as VðrÞ ¼ Ψ†ðrÞMΨðrÞ. At
charge neutrality, ν ¼ 0, ΨστηsðrÞ is a 16-component spinor
at spatial coordinate r and σ indexes the A=B sublattices, τ
denotes the graphene valley (K or K0), η indexes the two
mini-Dirac cones of MATBG [39] in a valley, s denotes
spin, and

M ¼
X3

α;β;γ;δ¼0

Cαβγδσ
α ⊗ τβ ⊗ ηγ ⊗ sδ ð1Þ

is a 16 × 16 matrix with eigenvalues �1. At integer fillings
away from ν ¼ 0, the ground state will be isospin polarized
and Ψ and M will have fewer components, which may
include a magnetic component at certain fillings [40]. The
mean-field order parameter OðrÞ ¼ hVðrÞi can then take
on the normalized values�1, corresponding to the different
degenerate mean-field ground states.
We will then consider the effects of long wavelength

fluctuations of OðrÞ. To do so, we divide the system into
regions centered at ri, which are separated by a length scale
af ≫ am, where am is the moiré lattice constant of MATBG
[Fig. 2(a)]. Within each region, we then integrate out the
higher momentum electron modes (see Supplemental
Material [41], Sec. I for an alternative derivation in which
the fermion fields are spatially averaged, which includes
Refs. [42–45]) to obtain an effective Hamiltonian for the
OðriÞ [Fig. 2(b)]. This is simply given by an Ising model
of the OðriÞ, with longer than nearest-neighbor-range
interactions, which are, in general, allowed in an effec-
tive theory in which high-energy fermion modes are
integrated out,

HI ¼
X
i;j

UijOðriÞOðrjÞ: ð2Þ

Since M is larger than 2 × 2, there is actually a trivial
degeneracy in the states corresponding to a given value of
OðriÞ, which cancels out in the computation of correlation
functions up to an overall factor of the number of flavors.
Anticipating the experimental observation of mesoscopic
heterogeneity [3], we will include in Uij a nearest-neighbor
ferromagnetic interaction J1 ¼ 1 and an extended-range
frustrating antiferromagnetic interaction J2 [see Fig. 3(a)],

HI ¼ −J1
X
hiji

OðriÞOðrjÞ þ J2
X
i;j

OðriÞOðrjÞe−rij=l: ð3Þ

Here rij ¼ jri − rjj, where ri indexes the domain sites (see
Supplemental Material [41], Sec. II for a comparison of J1;2
to experimentally observed energy scales, which includes
Ref. [46]). Although the lattice geometry of ri will not be
important in our results, we work on a triangular lattice
to preserve the C3 symmetry of the moiré sites, and take

(a) (b)

FIG. 2. (a) We coarse grain our system into hexagonal regions
centered at ri of size af that form a triangular lattice. In the mean-
field model (2), the Ising order parameter OðriÞ takes values �1
on each hexagonal plaquette. (b) Spectrum εðri;kÞ near the Dirac
points that have been gapped by interaction-induced symmetry
breaking. Higher momentum fermions Ψðri;kÞ in these regions
are integrated out, leaving a mean-field model for the modes
near k ¼ 0.

(a) (b) (c)

FIG. 3. (a) A visual representation of our model (3). Solid
arrows denote nearest-neighbor ferromagnetic coupling J1, and
dashed arrows denote the extended-range frustrating antiferro-
magnetic interaction J2, with shading indicating that the strength
of the J2 interaction falls exponentially in distance. (b),(c)
Configurations drawn from Monte Carlo sampling at T ¼ 3.5
and J2 ¼ 0.1 (b), J2 ¼ 1.0 (c), with the emergent length scale W
indicated for each configuration.
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l ¼ 2af [47]. We then study the effective model of Ising
variables using classical Monte Carlo simulations.
In the low-frustration (J2 ≪ 1) and intermediate-

temperature (1 < T < 5) regime, which we dub the “stripy
microemulsion” regime [48], the ensemble of spatial order-
parameter configurations is dominated by stripy mesoscale
domains with an emergent length scale W [Fig. 3(b)].
The stripy appearance of the order-parameter domains in
this regime follows from a mesoscopic length scale W that
satisfies L ≫ W ≫ 1, where L is the system size length
scale. By contrast, away from the stripy microemulsion
regime in the high-frustration (J2 ≳ 1) or in the high-
temperature (T > 5) regimes, typical configurations have
W ∼ 1, and thus each site interacts with an effectively
random distribution of Ising variables in its vicinity
[Fig. 3(c)]. From this observed dependence ofW on frustra-
tion J2, we conjecture a scaling form W=af ¼ FðJ2=J1Þ,
where FðxÞ is divergent for x ≤ 0 and monotonically
decreasing for x > 0, reaching FðxÞ ∼ 1 for x≳ 1. The
emergence of W can be understood from competition
between the nearest-neighbor ferromagnetic interaction
J1, which favors long-range order, with the frustrating
extended-range antiferromagnetic interaction J2, which
suppresses order. The relative strength between these
interactions tunes the system between the unfrustrated
Ising model, which has a divergent ordering length scale,
and a frustrated emulsionlike system. At finite values of J2,
we find intervening configurations featuring mesoscale
domains characterized by a finite length scale W.
Transport.—The low-energy current operators near the

mini-Dirac cones take the form [49]

Jx;yðrÞ ¼ evmDΨ†ðrÞðσx;y ⊗ τz ⊗ η0 ⊗ s0ÞΨðrÞ; ðν ¼ 0Þ;
ð4Þ

where e is the electron charge, and vmD is the effective Dirac
velocity. In order to gap out the mini-Dirac cones, the
current operator must anticommute with the mass matrix
M. It then follows that the action of JxðriÞ on the mean-field
ground state at ri comprising low-momentum electron
modes flips OðriÞ → −OðriÞ. Thus, the current operator
in our effective Ising model will be JxðriÞ ¼ evmDXðriÞ,
where XðriÞ is the Pauli-x operator that acts on the Ising
variable of site i. We compute conductivity in the Ising
effective Hamiltonian using the Kubo formula

σðωÞ ¼ i
ℏN

X
n;m;i

Pn
1 − e−βEmn

Emn

hnjJxðriÞjmihmjJxðriÞjni
ωþ iϵ − Emn

;

ð5Þ

where N is the number of lattice sites, n and m index the
ensemble of spatial order-parameter configurations, Pn is
the Boltzmann factor Pn ¼ e−βEn=Z, and Emn ≡ Em − En
are the transition energies. In the insulating states, which

correspond to the low-temperature regime of our model
T < 1, the values of OðriÞ are frozen. Upon heating into a
metallic phase, the system may then develop fluctuations of
the order parameter that will allow current to flow between
the coarse-grained order-parameter domains ri.
In Fig. 1(b), we plot the dc resistivity ρdc=ρ0 against

temperature T for various values of J2, where the unit of
resistivity is ρ0 ¼ ℏ=ðevmDÞ2. At J2 ¼ 1, which is in the
high-frustration regime, we observe a slope-invariant resis-
tivity, with no change in slope dρdc=dT from intermediate
(1 < T < 5) to high (T > 5) temperatures. By contrast, at
low frustration 0 < J2 < 1, we observe two T-linear
regimes of resistivity, at intermediate and high temper-
atures, with different slopes separated by a humplike kink,
indicating distinct underlying mechanisms of T-linear
resistivity. Two distinct regimes of T-linear resistivity with
different slopes are also seen in the experimentally mea-
sured resistivity of MATBG [Fig. 1(a)].
Insight into the slope of T-linear resistivity may be

gained from an investigation of the Kubo formula (5). The
second sum over states in (5) is nonvanishing only for states
m that differ from n by a sign flip at a single domain site,
and thus can be written as a sum over all sites. Then the real
part of conductivity can be expressed in the form

σðωÞ
σ0

¼
��

1 − e−βEmn

Emn

ϵ

ðω − EmnÞ2 þ ϵ2

�
m∈sites

�
n∼MC

;

ð6Þ

where σ0 ¼ 1=ρ0, the inner average is taken over all sites,
and the outer average is taken over Monte Carlo (MC)-
generated configurations, which follows the Boltzmann
distribution. Thus, after taking the limit ϵ → 0 in Eq. (5),
we may write the conductivity as

σðωÞ
σ0

¼ 1 − e−βω

ω
CðωÞ; ð7Þ

where CðωÞ ¼ ð1=NÞPn∼MC

P
m∈sites δðω − EmnÞ is the

spin-flip correlation function, satisfying
R
dωCðωÞ ¼ 1.

The dc conductivity can then be written in the simple
form σdc=σ0 ¼ βCð0Þ, from which we may conclude that
T-linear resistivity is associated with a plateau of Cð0Þ in
temperature. Remarkably, Cð0Þ holds simultaneous signifi-
cance as the slope of T-linear resistivity and the MC- and
site-averaged probability of an energy conserving, or soft,
spin flip.
In the stripy microemulsion regime, soft spin flips

may only take place on the boundaries of the stripy
domains, representing fluctuations of domains that preserve
W. Thus, the soft spin flips that contribute toward Cð0Þ are
the quasi-Goldstone gapless mode associated with the
spontaneous translational symmetry breaking induced by
the stripy heterogeneity [50]. The spectral peak of this
mode is independent of T at intermediate temperature
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ð1 < T < 5Þ. This T-independent value of Cð0Þ then sets
the slope of the intermediate-temperature T-linear resis-
tivity seen in Fig. 1(b). This mechanism is in contrast with
the T-linear resistivity away from the stripy microemulsion
regime, in which each Ising site fluctuates in the vicinity of
an effectively random, T-independent distribution of Ising
variables. The J2 independence of the slope of resistivity in
the stripy microemulsion regime is more surprising and can
be understood as a feature of the crossover between the
low-frustration regime, in which the local Ising interaction
is still dominant, and high-frustration regime, which is
dominated by the extended-range frustration.
Entropy.—Experimental investigations of integer-filled

MATBG report enhanced entropy at low temperature with a
nonlinear dependence on temperature [51] [see Fig. 4(a)].
We calculate entropy in the effective Ising model (2) using
the formula [52]

SðβÞ ¼ Sðβ ¼ 0Þ þ βhEi −
Z

β

0

hEidβ: ð8Þ

In Fig. 4(b), we have plotted entropy vs T for a range of
frustration J2. We observe that increasing values of J2 has
the effect of enhancing entropy in the low-temperature
regime. The concave shape of the entropy curve at
intermediate temperatures (1 < T < 5) echoes the exper-
imental results. This enhanced entropy is readily under-
stood within the picture of mesoscale domain formation. As
the system is heated from the low-temperature limit, where
the stripy domains are frozen, the Goldstone modes at the
boundaries of the stripy domains are allowed to fluctuate.
These fluctuating modes add an extrinsic contribution to
entropy, leading to the dramatic enhancement of entropy
compared to the unfrustrated Ising model (in which
J2 ≤ 0). We emphasize that the fluctuating Goldstone
modes of the stripy microemulsion regime are responsible
for both a sharp increase of entropy in temperature as well
as T-linear resistivity.

We now comment on the experimentally observed
sensitivity of transport and the entropy to external magnetic
fields [7,51] observed at fillings ν ¼ �1;�2;�3. At
these fillings, since the ground states are spin polarized
[13,14,17], the spin polarization could also fluctuate like
OðriÞ. Our Ising model (2) may therefore indirectly couple
to the Zeeman field in a model with SU(2) spin,

HI;S ¼
X
i;j

½U0
ij þU1

ijS
zðriÞSzðriÞ�OðriÞOðrjÞ

þ
X
ij

US
ijS

zðriÞSzðriÞ þ h
X
i

SzðriÞ; ð9Þ

where h is the Zeeman field. In this spin-Ising coupled
model, the entropy will be a sum of contributions from
fluctuations in the Ising variable OðriÞ, captured by the
effective Ising model (2), and fluctuations in spin Sz. At low
temperatures, when the order-parameter sector is suscep-
tible to mesoscale domain formation, the spin sector will
also be highly susceptible to ordering. An externally
applied in-plane magnetic field will then rapidly quench
the entropy in the spin sector while leaving the entropy
in the order-parameter sector. We speculate that such a
mechanism may be responsible for the in-plane magnetic
field dependence of entropy observed in Ref. [51] that is
difficult to explain from a standard free Dirac fermion
picture.
Discussion and conclusion.—In this Letter, we have

constructed a theory of Dirac fermions with a local mass
fluctuating across space. In this theory, we have accounted
for the energy cost of spatial variation in the order para-
meter with an Ising variable model with nearest-neighbor
ferromagnetic interaction J1 ¼ 1, as well an extended-range
frustrating antiferromagnetic interaction J2, motivated by
the experimentally observed absence of long-range order at
zero magnetic field in some MATBG samples [3]. By an
examination of the dominant order-parameter configura-
tions, we identify a stripy microemulsion regime at low
frustration and intermediate temperature, characterized by
an emergent mesoscopic length scale W and corresponding
stripy order-parameter domains. This length scale W arises
from the competition between ferromagnetic order J1 and
frustration J2, and is divergent for J2 < 0 and monotoni-
cally decreasing for J2 > 0, reaching W ∼ 1 in the high-
frustration regime J2 ≳ 1. In the stripy microemulsion
regime, the characteristic length scale is large
L ≫ W ≫ 1, and the gapless fluctuations of the stripy
mesoscale domains are responsible for both the slope of
T-linear resistivity and the enhanced entropy. Our Letter
therefore suggests a relationship between the slope of
T-linear resistivity and low-temperature entropy and the
appearance of mesoscale order-parameter domains in inte-
ger-filled MATBG. As a clear experimental signature of our
picture, we anticipate a concurrent appearance of T-linear
resistivity and a steep rise in entropy, both driven by

(a) (b)

FIG. 4. (a) Entropy vs temperature T at various integer fillings of
MATBG adapted from Ref. [51]. Inset: original figure presented in
Ref. [51], with vertical cuts illustrating how the data were adapted
for the main figure. (b) Entropy vs temperature for various values
of J2 in our model (3). Dashed line at the value of S ¼ ln 2
indicates the extrapolated zero-temperature residual entropy.
Adapted by permission from Springer Nature: Y. Saito et al. [51].
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fluctuating isospin domains, upon heating from the corre-
lated insulator state.
We make a few brief comments relating our Letter to the

existing literature. Previous works carried out fruitful
studies of fluctuations from disorder in strongly correlated
electronic systems [53,54]. However, we emphasize that
the frustration in our model is geometric rather than
disorder driven. An earlier work in the context of the
cuprates considered a classical model in the strong-
coupling limit and perturbative hopping [27]. In this
Letter, we have applied a similar strong-coupling perspec-
tive to MATBG that yielded much insight (although with-
out the requirement of perturbative hopping). Thus, the
strong-coupling approach of this work is distinct from
weak-coupling electron-scattering pictures of transport
considered in previous theoretical studies of transport in
MATBG [55,56]. In addition, although in this Letter we
have identified T > 5 as a “high-temperature” limit, we
note that this is distinct from the ultrahigh-temperature limit
considered in previous studies of T-linear resistivity
[37,57], in which T is the largest scale in the problem
and the thermal ensemble e−βH is proportional to the
identity. Because of the extended range of the frustrating
interaction, transition energies in (5) can be as large as 20,
and we are therefore safely away from this regime.
Interesting directions for future work remain. An exper-

imentally observable feature of frustration is the appearance
of mesoscale order-parameter domains, reminiscent of
domains that have been imaged using a superconducting
quantum interference device [3]. Our results suggest a
relationship between the presence of frustration, the size
of such order-parameter domains, and the observation of
distinct regimes of T-linear resistivity and enhanced low-
temperature entropy.
It would also be interesting to consider cases where the

quantization axis ofM is allowed to fluctuate, which would
lead to vector models instead of Ising models, and to
consider models where quantum fluctuations of the order
parameters are also allowed (see Supplemental Material
[41], Sec. I for more detailed discussions).
Finally, while we have focused on the integer fillings

in this Letter, a different kind of T-linear resistivity, this
time at low temperatures below the ordering temperature
(≲10 K) of the correlated insulator phase at integer fillings,
is also observed when the system is doped away from
integer fillings, with a magnitude much smaller than
h=e2 per Dirac flavor [8–11]. This T-linear resistivity also
displays the phenomenon of “Planckian dissipation” [9,11],
which likely originates from a Fermi surface [34,35,55,56].
It would therefore be interesting to explore in detail how the
resistivity evolves as a function of T away from integer
fillings. We expect the parameters J1;2 in (2) to smoothly
deform as we move away from integer fillings and
the fluctuations of OðrÞ to therefore still persist (see
Supplemental Material [41], Sec. I for a more detailed

discussion of fractional fillings). The low-temperature
behavior of the resistivity at fractional fillings must be
different from that at integer fillings since the ground states
of fractional and integer fillings are rather different, i.e., a
Fermi surface instead of an insulator. Nevertheless, the
Fermi surface will be washed out at higher temperatures
due to strong quasiparticle scattering, suppressing its
contribution to the conductivity. Thus, we expect that
the fluctuations of the order parameter OðrÞ considered
in our model will then contribute significantly to the
conductivity. This might help explain why a similar slope
of the T-linear resistivity is experimentally observed at T ≳
10 K independent of the filling [9,11]. Indeed, varying
J2=J1 in our model leads to a qualitatively similar variation
of ρðTÞ as varying the filling in experiments, at inter-
mediate and high temperatures (Fig. 1).
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