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We present a framework for understanding the cascade transitions and the Landau level degeneracies
of twisted bilayer graphene. The Coulomb interaction projected onto narrow bands causes the charged
excitations at an integer filling to disperse, forming new bands. If the excitation moves the filling away
from the charge neutrality point, then it has a band minimum at the moiré Brillouin zone center with a
small mass that compares well with the experiment; if towards the charge neutrality point, then it has a
much larger mass and a higher degeneracy. At a nonzero density away from an integer filling the
excitations interact. The system on the small mass side has a large bandwidth and forms a Fermi liquid.
On the large mass side the bandwidth is narrow, the compressibility is negative and the Fermi liquid is
likely unstable. This explains the observed sawtooth features in compressibility, the Landau fans pointing
away from charge neutrality and their degeneracies. The framework sets the stage for superconductivity
at lower temperatures.
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The discovery of the correlated insulating phases and
superconductivity in the magic-angle twisted bilayer gra-
phene has generated a flurry of research activity [1–76].
This remarkable system exhibits correlated insulating
phases at integer fillings of narrow bands [2–6,8], a
hallmark of strong coupling physics. Away from (certain)
integer fillings, the same system becomes superconducting
below a sufficiently low temperature, descending from a
normal state exhibiting Fermi liquidlike quantum oscilla-
tions, both hallmarks of charge itineracy.
Recent observations of the cascade transitions in the

compressibility and scanning tunneling microscopy studies
at temperatures above the full onset of insulation or
superconductivity [14,15,19] have further sharpened this
dichotomy. On the one hand, clear features associated with
an integer filling of the moiré unit cell were observed as
expected in strong coupling [7,9]. On the other hand, the
electron system appears highly compressible when integer
filling is approached from the charge neutrality point
(CNP) side—even with negative compressibility—and
much less compressible when approached from the remote
bands side, producing sawtooth features in the inverse
compressibility vs filling, ν, plots [15,19–21,23]. This led
the authors of Ref. [15] to propose a simple “Dirac revival”
picture based on the strictly intermediate coupling of a
simplified model in which the noninteracting Bistritzer-
MacDonald (BM) [1] bands are sequentially filled. In this
picture, starting from the CNP the BM bands are filled

equally until a critical ν after which one of the flavors is
nearly fully populated, while the densities of the remaining
flavors are reset to somewhat below the CNP. The key
source of itineracy for such a proposal is the dispersion of
the BM bands. Unfortunately, the BM bands also feature
two Dirac nodes per spin and valley, doubling the Landau
level degeneracy away from each integer ν to 8,6,4,2
sequence, and making this proposal inconsistent with the
observed 4,3,2,1 sequence.
Here we show that the nontrivial narrow band topology

and geometry [29,33,36,37,39], neglected in the simplified
model of Ref. [15], combined with Coulomb interaction
can drive the itineracy of the single particle charge
excitations near the integer ν even in strong coupling,
i.e., when the BM kinetic energy is neglected. In addition
to insulating phases belonging to spin-valley U(4) or
Uð4Þ × Uð4Þ manifold [42,55,63], the interplay of band
topology and geometry and strong Coulomb interactions
was shown to make the strong coupling nematic phases,
which are semimetallic, energetically competitive [46,58].
The nematic phase was recently shown to be further
stabilized by strain [75]. Absence of gaps is therefore
not at variance with the strong coupling picture.
Interestingly, in all of these phases, whether insulating

or semimetallic, the band minimum of the single particle
charge excitations appears at Γ, the center of the moiré
Brillouin zone (mBZ), naturally producing the experimen-
tally observed sequence of weak magnetic field Landau
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level degeneracies. Here we provide an explanation of this
observation and find that the strong coupling band degen-
eracies are a consequence of a novel action of the
combination of the unitary particle-hole [37] and the
C2T symmetries. We find that the band dispersion of a
single particle or a single hole added to the strong coupling
phases at a nonzero integer ν is highly asymmetric (see
Fig. 1). If the excitation moves ν closer to (away from) the
CNP it is heavy with a narrow bandwidth (light with a large
bandwidth). The light mass excitations have a minimum at
Γ and a smaller degeneracy than the heavy ones, whose
minima are away from a high symmetry k point. At a finite
density away from an integer ν, the single particle exci-
tations repel each other [64]. By estimating the ratio of the
residual interaction to the kinetic energy obtained by filling
the new (nonrigid) bands, the system on the small mass
side is a Fermi liquid. The mass compares favorably with
experiments [77]. On the heavy mass side, we found several
nearly degenerate states that are related by many particle-
hole excitations, suggesting that there, the residual inter-
actions lead to additional instabilities of a heavy Fermi
liquid. This explains the observed Landau fans pointing
away from the CNP and their degeneracies. The chemical
potential μ is similar to experiments, including negative
compressibilities and the overall magnitude of its difference
between fully occupied and empty eight narrow bands,
regardless of whether the strong coupling states at odd
integer ν are gapped or gapless (see Fig. 2).
Our starting Hamiltonian includes only the momentum

conserving Coulomb interactions (renormalized by the
remote bands) projected onto the BM narrow bands

H ¼ 1

2A

X
q≠0

VðqÞδρqδρ−q: ð1Þ

Here A is the area of the system, VðqÞ ¼ ½ϵq=ð2πe2Þ þ
ΠðqÞ�−1 [53], for the encapsulating hexagonal boron-nitrite
ϵ ¼ 4.4, and the static polarization functionΠðqÞ originates
from the remote bands [77–79]. δρq ¼ ρq − ρ̄q is the
difference between the projected density operator and
the background charge density, and q is not restricted to
the first mBZ (unlike the sum over k below). Specifically,

ρq ¼
X

τ¼K;K0

s¼↑↓

X
k∈mBZ
n;n0¼�

Λτ
nn0 ðk; kþ qÞd†τ;n;s;kdτ;n0;s;kþq; ð2Þ

ρ̄q ¼ 2
X

G;n¼�
δq;G

X
k∈mBZ

ΛK
nnðk; kþ GÞ; ð3Þ

where ρq is expressed in the Chern basis Φτ;�;kðrÞ that
carries the indices of the valley τ ¼ K or K0, the Chern
n ¼ �, the spin s ¼↑ ↓, and the k, for creation and
annihilation operators d† and d. The Chern states are the
sublattice polarized states of the BM model for narrow
bands [55,58] at the magic angle, i.e., w1=ðvFkθÞ ¼ 0.586
and w0=w1 ¼ 0.7, where w0 and w1 are the two interlayer
couplings [28,29,41], vF is the Fermi velocity for the
monolayer graphene, kθ ¼ 8π=ð3LmÞ sinðθ=2Þ, and Lm is
the moiré lattice constant. Spinless time reversal symmetry
relates the valleys K andK0 [27–29]. The form factor matrix
Λτ
mnðk; kþ qÞ ¼ R

uc dre
−iq·rΦ�

τ;m;kðrÞΦτ;n;kþqðrÞ contains
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FIG. 1. Quasiparticle bands at different fillings ν for the trial state jΨGSi at w0=w1 ¼ 0.7 when the C2T symmetry is allowed to be
broken (top two panels) and when C2T is enforced (bottom two panels). The hexagonal insets show occupied k points.
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the information about the nontrivial topology and geometry
of the narrow bands and plays an important role in the
physics we describe; it has been neglected in Ref. [15].
Previous analytical and numerical works showed that

over a large range of parameters the ground states jΨGSi
of H in Eq. (1) are Slater determinants [42,55,58,63,65].
At even integer ν they consist of all states that satisfy
[55,59,63]

δρqjΨGSi ¼
ν

4

X
G

δq;Gρ̄GjΨGSi; ð4Þ

with the eigenenergy Eν ¼ ð1=2AÞPG≠0 VðGÞjðν=4Þρ̄Gj2.
The exact excited states can also be obtained [59,64].
Indeed, acting withH on the state X̂jΨGSi, where X̂ is some
combination of d†s and ds, and using Eq. (4)

ðH − EνÞX̂jΨGSi ¼
1

2A

X
q

VðqÞð½δρ−q; ½δρq; X̂��

þ ½δρq; X̂�δρ−q þ ½δρ−q; X̂�δρqÞjΨGSi:
ð5Þ

The last two terms can be further simplified by applying
Eq. (4). Because each commutator has the same number
of d†s and ds as the ones in X̂, we can match the
coefficients. This was used to find the charge neutral

collective modes [59,64] and to show that the spectrum
of charge-2 elementary excitations for a purely repulsive
VðqÞ does not have a bound state [64]. For X̂þ ¼ d†τ;n;s;k
and X̂− ¼ dτ;n;s;k, Eq. (5) reduces to solving for eigenvalues
of the 2 × 2 matrix

Eτ
n0n;�ðkÞ ¼

1

2A

�X
q

VðqÞ
X
m

Λτ
mnðk − q; kÞΛτ

n0mðk; k − qÞ

� ν

2

X
G

VðGÞρ̄GΛτ
n0nðkþ G; kÞ

�
; ð6Þ

that leads to 2 different bands for both electron and hole
excitations for each spin s. To illustrate the main effect,
consider first the chiral limit [41,80,81], w0=w1 ¼ 0
when the Chern states are perfectly sublattice polarized.
Therefore, Λτ

mnðk; kþ qÞ is diagonal in m, n and Slater
determinant states obtained by filling Chern bands satisfy
(4) also at odd filling; they have been shown to be the
ground states in exact diagonalization (ED) studies in
Ref. [65]. The spectrum of the single particle excitations
can then be solved using Eq. (6) at any integer filling. The
eigenstates of Eτ

n0n;þðkÞ are exactly degenerate over the
whole mBZ, as are the eigenstates of Eτ

n0n;−ðkÞ. This is
due to the combination of the twofold rotation about the
axis normal to the plane, spinless time reversal and the
chiral particle-hole symmetries [41,55,60,62], K0 ¼ C2T C.
Because K0 preserves k and K02 ¼ −1, Eτ

n0n;�ðkÞ must be
proportional to δmn for each k.
For w0=w1 ≠ 0 the particle and hole dispersions are the

same at the CNP. The two bands are now degenerate only at
high symmetry points Γ, M, Km, and K0

m (see Fig. 1). The
degeneracies at Γ and M are protected by C2T times
particle-hole symmetry P discussed in Refs. [37,59,77].
Combined with C3 symmetry, the winding numbers at Γ
and M can be shown to be 3 and −1, respectively. The
degeneracy at Km (and K0

m) is protected by C3 with the
winding number of 1 (see Ref. [77]).
Although such degeneracy is also seen at ν ¼ �2;�4,

excitation spectra are markedly different. The bands away
from CNP have the minimum at Γ and wide bandwidth.
However, the bands towards CNP are narrower with
minima away from high symmetry k points. To understand
this, we return to the chiral limit (w0=w1 ¼ 0) with two
gate screened Coulomb interaction (with the distance to
the metallic gate ξ ¼ 5Lm) and analyze the first (exchange)
and the second (direct) terms in Eq. (6). Both terms
can be well approximated by a nearest neighbor (NN)
tight-binding model on a triangular lattice [77,82,83]
with NN hopping amplitudes tE ¼ −0.0530ðe2=ϵLmÞ
and tD ¼ −0.0523ðe2=ϵLmÞ, and with on-site terms ϵE ¼
1.714ðe2=ϵLmÞ and ϵD ¼ 0.333ðe2=ϵLmÞ for exchange and
direct terms, respectively [77,82]. This, as well as our k · p
analysis around the Km point based on Refs. [61,77], show
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FIG. 2. Chemical potential μ as the filling ν varies between −4
and 4 when C2T symmetry is allowed to be broken (top panel)
and when C2T is enforced (bottom panel).
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that the minimum of the dispersion is at Γ when the two
terms add. When they subtract, the bandwidth is reduced.
The magnitudes of the NN hoppings tE and tD are such that
at ν ¼ �1 the cancellation is nearly complete, leading to
the narrow band of heavy holes at ν ¼ 1 and heavy particles
at ν ¼ −1. For jνj ≥ 2, the dispersions towards CNP
reverse compared to ν ¼ 0, also with heavy excitations.
Because for excitations at ν ≠ 0 that are moving the filling
away from the CNP the direct and the exchange terms
add (in absolute value), the resulting bands are more
dispersive with a minimum at Γ. These are the light
fermions. As seen in Fig. 1, the effect persists away from
the chiral limit w0=w1 ≠ 0.
At a finite density away from an integer ν the excitations

mutually interact [59,64] as seen from Eq. (5).
Nevertheless, the steep dispersion of a single electron
(hole) added to the exact eigenstates at the positive
(negative) integer ν and at CNP suggests that at a finite
density close to the integer ν—and in the direction away
from CNP—the kinetic energy of such excitations is
sufficient to stabilize a Fermi liquid. This is broadly
consistent with the ED results of Ref. [84], where emergent
Fermi liquids were also found in different, albeit
related, models of moiré heterostructures. We therefore
approximate the ground state by the trial state jΨGSi ¼Q

s;k P̂s;kjΨCNPi where jΨCNPi is a ground state at CNP
which, without loss of generality, is taken to be completely
K0 valley polarized with all four K bands empty. At each s, k
there are two bands at K whose occupation is determined
by νs;k; when empty (νs;k ¼ 0) P̂s;k ¼ 1 and when doubly
occupied (νs;k¼2) P̂s;k¼d†K;þ;s;kd

†
K;−;s;k. When singly occu-

pied (νs;k¼1), we have P̂s;k¼us;kd
†
K;þ;s;kþvs;kd

†
K;−;s;k with

variational parameters satisfying jus;kj2 þ jvs;kj2 ¼ 1. The
integer parameters νs;k are also determined variationally
and satisfy the constraint

P
s;k νs;k ¼ νNuc, where Nuc is

the total number of moiré unit cells. Minimizing E ¼
hΨGSjHjΨGSi subject to the mentioned constraints yields
the self-consistent eigenequations for us;k and vs;k,

Heffðs; kÞ
�
us;k
vs;k

�
¼ Eαðs; kÞ

�
us;k
vs;k

�
: ð7Þ

Heff is detailed in the Supplemental Material [77]. Eαðs; kÞ
specifies the band structure shown in Fig. 1. Figure 2 shows
the ν dependence of chemical potential μ, calculated from
the constraint

P
α;s;kΘ½μ − Eαðs; kÞ� ¼ νNuc. The follow-

ing discussion focuses on ν ≥ 0, the states with ν < 0 can be
obtained using the many-body particle-hole symmetry [62].
At ν ¼ 2, our variational method results in jΨν¼2

GS i ¼Q
n¼�;k d

†
K;n;s;kjΨCNPi, where the spin s ¼↑ or ↓. Although

this exact (gapped) eigenstate breaks the time reversal
symmetry (spinful and spinless), it does not break C2T .
Thus it carries zero Chern number. It was also numerically

shown to be the ground state [65]. Its single particle
excitation spectrum produced by Eq. (7) is the same as
the ones obtained in Eq. (6). At odd integer νwith w0=w1 ¼
0.7 this method results in the quantum anomalous Hall
(QAH) state with spontaneously broken C2T symmetry if
no additional constraints are applied as shown in the upper
two panels of Fig. 1. This result is consistent with the exact
solution obtained in the chiral limit (w0=w1 ¼ 0), the recent
DMRG calculation [58,70] and the ED [65] for a range of
w0=w1 ≠ 0. For comparison, applying the C2T symmetric
constraint to the odd ν trial state jΨGSi leads to a semi-
metallic nematic state as shown in the lower two panels of
Fig. 1. Both the C2T broken Chern insulators and C2T
symmetric gapless states are nearly degenerate, as also
demonstrated by DMRG and ED calculations [58,65,70].
At noninteger fillings jΨGSi leads to gapless compress-

ible phases. The details of the band evolution with ν are
shown in Fig. 1. At ν just above the positive integers the
gapless excitation spectrum is strongly dispersive, with the
bandwidth set by e2=ðϵLmÞ. As discussed below, we expect
such low compressibility phases to be stable when the
residual interaction that scatters among different trial states
is included, resulting in Fermi liquids at these fillings.
Furthermore, the cyclotron mass is roughly proportional to
the difference between ν and the integer [77]. The ultimate
instability of the Fermi liquids upon approaching a positive
integer ν from below stems from the mentioned residual
interactions and the fact that the band structure is not rigid,
with the partially filled band(s) flattening as ν approaches
an integer (see Fig. 1). Even within this simple variational
method, which does not account for the residual inter-
actions, there are several Stoner-like phase transitions as the
integer ν is approached from below. Such spontaneous
breaking of C2T , particle-hole, or C3 symmetries, furthers
the instabilities of the Fermi liquid. We found the transition
occurring between ν ¼ 0 and ν ¼ 1 to be first order,
becoming a second order between higher integer fillings.
As illustrated in Fig. 2, at each non-negative integer ν,

the chemical potential μ increases as ν moves away from
the CNP. Before ν gets to the next integer, μ reaches its
local maximum at a fractional filling and then decreases,
resulting in the negative compressibility ðdμ=dνÞ. The net
increase of μ is ∼40 meV which compares well with
∼50 meV found in experiments [10,14,15,19,23].
Because the dominant residual interaction is repulsive

[59,64], we estimate its importance over dispersion in two
different ways. First, we consider rs, defined as the ratio of
Uðr̄Þ ¼ R ½d2q=ð2πÞ2�VðqÞeiq·r̄, i.e., the residual Coulomb
potential energy of two excitations separated by r̄ ¼
1=

ffiffiffiffiffi
δn

p
, and the average kinetic energy EK; here δn is

the density deviation from the closest integer filling. For an
electron excitation of a partially filled band we define
Ee
K ¼ R

filled½d2k=ð2πÞ2�½EðkÞ − Emin�, where Emin is the
band minimum, while for hole excitations, Eh

K ¼R
unfilled½d2k=ð2πÞ2�½Emax − EðkÞ�, where Emax is the band
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maximum. Then, EK is set to be the smaller of Ee
K and Eh

K .
As ν approaches an integer, δn → 0 and rs ¼ Uðr̄Þ=EK

diverges becauseUðr̄Þ ∼Oð ffiffiffiffiffi
δn

p Þ andEK ∼OðδnÞ. Form <
ν≲mþ 0.017 where m is a non-negative integer, we find
rs ≥ 35, i.e., rs is above the critical value for the Wigner
crystallization [85,86]. If we include additional screening due
to the nearbymetallic gates,UðrÞ ismodified from1=r at long
distances and decays faster when r is larger than the distance
to gates lg. Therefore Uðr̄Þ ≪ EK at small δn, eliminating a
possible Wigner crystal if δn < l−2g . For a typical gate
distance lg ∼ 40 nm, the screened Coulomb interaction
eliminates the Wigner crystal if m < ν≲mþ 0.09.
Therefore, no Wigner crystal should exist close to an integer
filling on the side away from the CNP.
Second, we calculate the ratio between Uðr̄Þ and W, the

bandwidth of the excitations. If m < ν≲mþ 0.3, then
Uðr̄Þ=W ≲ 0.3, suggesting that the system is in the weak
coupling regime. Together with the above analysis of rs, we
conclude that the system is in the Fermi liquid phase if the
filling is in this interval. Moreover, as illustrated in Fig. 1,
in this filling interval the 4 −m partially occupied bands
are filled equally near Γ, resulting in the experimentally
observed Landau fan degeneracy of 4 −m when pointing
away from the CNP [2–4,8].
On the other hand, for mþ 0.4≲ ν < mþ 1, the varia-

tional calculation resulted in the band reconstruction and
several nearly degenerate states. These states are related by
many particle-hole excitations, implying that the obtained
states are likely unstable upon including the residual
interactions between the quasiparticles. These bands are
narrow at every integer filling for excitations towards the
CNP, naturally explaining the absence of the Landau fans
towards the CNP [2–4,8].
The framework presented here provides a strong cou-

pling description of the itinerant carriers, whose residual
interactions and dispersion both depend on the Coulomb
interaction. The description of the charge itineracy pre-
sented here is in quantitative agreement with experiments,
and builds a framework within which superconductivity,
emerging at lower temperatures at some fillings, should be
understood.
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