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We propose the combination of subwavelength, two-dimensional atomic arrays and Rydberg
interactions as a powerful platform to realize strong, coherent interactions between individual photons
with high fidelity. The atomic spatial ordering guarantees efficient atom-light interactions without the
possibility of scattering light into unwanted directions, allowing the array to act as a perfect mirror for
individual photons. In turn, Rydberg interactions enable single photons to alter the optical response of
the array within a potentially large blockade radius Rb, which can effectively punch a large “hole” for
subsequent photons. We show that such a system enables a coherent photon-photon gate or switch, with a
significantly better error scaling (∼R−4

b ) than in a disordered ensemble. We also investigate the optical
properties of the system in the limit of strong input intensities and show that this many-body quantum
driven dissipative system can be modeled well by a semiclassical model based on holes punched in a
classical mirror.
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Introduction.—Rydberg electromagnetically induced
transparency (REIT) is a promising approach in the
challenging quest to achieve strong coherent interactions
between individual photons [1]. In EIT, an additional pump
field enables probe photons to hybridize with metastable
atomic excitations and propagate without loss [Figs. 1(a)
and 1(b)] [2–4]. When the metastable state corresponds to a
high-lying Rydberg level (REIT), this effect becomes
highly nonlinear as strong atomic Rydberg interactions
destroy the EIT transparency condition. Then, a second
photon within a “blockade radius” of the first effectively
sees a strongly scattering two-level medium, an effect now
routinely observed [5–10]. However, despite many spec-
tacular experiments, it remains challenging to functionalize
REIT into coherent, single-photon nonlinear devices. A
major reason is that the two-level blockaded region is
naturally dissipative, scattering photons into random
uncontrolled directions. The best known gate protocol
has an error that scales with blockade radius (or more
properly, optical depth per blockade radius) as ∼R−3=2

b [7].
Rydberg nonlinear optics would be much more robust if

an ensemble of two-level atoms could be made completely
lossless to resonant light. Remarkably, this occurs when the
atoms form a defect-free array with subwavelength lattice
constant. Then, the spatial ordering and interference in
emission ensure that atoms cannot scatter light into random
directions, but only into the same mode (in the backward
or forward directions) as the light coming in. The optical

properties of arrays have attracted significant interest,
especially in the linear optical regime [11–27]. As one
particularly relevant example, it has been theoretically
predicted [16,18,28] and experimentally observed [22] that
a two-dimensional (2D) array can act as a nearly perfect
mirror for weak resonant light [Fig. 1(c)]. Nonlinear optics
in arrays using the two-level nature of atoms [29–31] or
atomic motion [32] are also being explored, as is the
conditional linear response based on Rydberg blockade to
produce interesting quantum optical states [26,27].
Here, we propose Rydberg interactions in 2D arrays as a

powerful platform for quantum nonlinear optics (also
recently discussed by Zhang et al. [33]). First, we show

(a) (b) (c)

FIG. 1. (a) Level diagram of single three-level atom with
ground, excited, and Rydberg levels, and relevant detunings
and Rabi frequencies indicated. (b) In REIT in a disordered
ensemble, an atom in a Rydberg level (red) creates an effective
medium of two-level atoms (blue) within a blockade radius Rb,
which strongly scatters near-resonant incident light. (c) An array
of two-level atoms (with states jg; ei) shown nearly perfectly
reflecting a weak resonant Gaussian beam of waist w0.
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how Rydberg dressing interactions lead to strong anti-
bunching in the reflected field, once the blockade radius
exceeds the incident beam waist. This inability to simulta-
neously reflect two photons arises as a reflected photon
momentarily punches a large “hole” in the atomic mirror.
We then propose a protocol to realize a coherent photon-
photon gate or switch, where the presence (absence) of a
first photon results in the transmission (reflection) of a
second photon, and derive a favorable scaling of gate error
as ∼R−4

b . Finally, we investigate the response of an array in
the limit of high input intensity, where the system exhibits a
nontrivial dependence of reflectance, transmittance, and
loss on driving power and blockade radius. Although this
a priori represents a complicated, many-body quantum
driven dissipative system, the behavior can be captured
well by a semiclassical stochastic model based on holes
punched in a mirror.
System and formalism.—We consider a two-dimensional

square array (lattice constant d) of Na ¼ N2 atoms trapped
at fixed positions in the z ¼ 0 plane. The ground
and excited states jg; ei support an optical transition with
electric dipole matrix element ℘ oriented along one of the
lattice axes. Each atom will interact with both an incoming
field taken to be a coherent state with spatial mode EinðrÞ
and frequency ωL, and the radiated fields of other atoms.
The resulting atomic dynamics are governed by the master
equation [34]

_̂ρ ¼ −ði=ℏÞðHeff ρ̂ − ρ̂H†
effÞ þ

XNa

i;j¼1

Γijσ̂gej ρ̂σ̂egi ; ð1aÞ

Heff=ℏ ¼ −
�
δþ i

Γ0

2

�XNa

i¼1

σ̂eei −
XNa

i¼1

ðΩiσ̂
ge
i þ H:c:Þ

þ
XNa

i;j¼1;i≠j

�
Jij − i

Γij

2

�
σ̂egi σ̂gej þ V̂Ryd: ð1bÞ

Here, we define the atomic operators σ̂αβi ¼ jαiihβij with
fα; βg ∈ fg; eg, the detuning δ ¼ ωL − ω0 with respect to
the single-atom bare frequency ω0, and the Rabi frequency
Ωi ¼ ℘ ·EinðriÞ=ℏ of an atom at ri. We will eventually
consider a Gaussian beam focused on the atomic plane, in
which case we express Ωi ¼ Ω0e−ρ

2
i =w

2
0 in terms of a peak

Rabi frequency Ω0, the beam waist w0, and the in-plane
radial coordinate ρi. The Rydberg interaction term V̂Ryd

will be specified later. The photon-mediated interactions
between atoms are given by

Jij − iΓij=2 ¼ −
μ0ω

2
0

ℏ
℘� ·Gðri − rj;ω0Þ ·℘; ð2Þ

with Jij, Γij ∈ ℜ describing coherent interactions and
collective emission, respectively. Gðr;ω0Þ is the electro-
magnetic Green’s tensor in free space,

Gðr;ω0Þ ¼
eik0r

4πk20r
3

�
ðk20r2 þ ik0r − 1Þ1

þ ð−k20r2 − 3ik0rþ 3Þ r ⊗ r
r2

�
; ð3Þ

with k0 ¼ ω0=c. For a single isolated atom, the excited-
state spontaneous emission rate is given by Γii ≡ Γ0 ¼
℘2k30=ð3πℏϵ0Þ.
The atomic dynamics under Eq. (1a) directly encode the

emitted field correlations [35–38]. While the atoms emit
into all directions, we consider the experimentally realistic
scenario where an input mode (e.g., a Gaussian) is defined,
and only the light emitted back into the same mode in the
backward (reflected) or forward (transmitted) directions is
collected. The field operators associated with these detec-
tion modes EdetðrÞ [with det ¼ ðR; TÞ� are [20]

Êdet ¼ Êdet;in þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2ℏϵ0A

s
XNa

j¼1

E�
detðrjÞ ·℘σ̂gej ; ð4Þ

where Êdet;in is the quantum input field of the particular
mode, and A ¼ R

z¼constE
�
detðrÞEdetðrÞd2r. With this nor-

malization, hÊ†
detÊdeti is the rate of photons emitted in

the mode.
The above formalism fully captures the physics of

multiple scattering and wave interference of light. As the
dynamics depends on the detailed microscopic position
configurations, typical quantum theories for disordered
ensembles (e.g., to derive gate fidelities [7]) ignore such
complicating effects. In contrast, our proposal exploits
these effects as a major resource.
Linear regime and perfect reflection.—One important

consequence is that an infinite 2D array can behave as a
perfect mirror for single photons. Let us consider a plane-
wave input field ∼eik·r with in-plane component kk and
normal component satisfying k2z ¼ ðωL=cÞ2 − jkkj2. In the
linear (single excitation) regime, the driving field only
couples to spin waves of the same wave vector; for
subwavelength lattices (d < λ0=2 ¼ π=k0), these spin
waves also only reradiate light of wave vector kk (in the
transmitted and reflected directions �kz). The reflection
and transmission coefficients are [18]

r ¼ hÊRi
hÊT;ini

¼ −
iΓkk=2

δ − Δkk þ iΓkk=2
; t ¼ 1þ r: ð5Þ

Here, the collective decay rates Γkk ¼ ð3πΓ0=k20d
2Þð1 −

jkkj2=k20Þ and resonance frequency shifts Δkk ¼P
j≠0 e

ikk·ðrj−r0ÞJ0j of the spin wave mode kk arise from
multiple scattering [39]. Notably, when the driving field
resonantly excites a spin wave (δ ¼ Δkk), the array

becomes purely reflecting, jrj2 ¼ 1.
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Rydberg dressing.—We now add a high-lying
Rydberg state jri coupled to jei by a uniform classical
control field with Rabi frequency Ωc and detuning δc
from the bare jei-jri transition. We also introduce the
two-photon detuning Δ ¼ δþ δc [Fig. 1(a)]. Rydberg
atoms undergo a strong van der Waals interaction,
V̂vdW ¼ P

i<j C6r−6ij σ̂
rr
i σ̂

rr
j , with rij ¼ jri − rjj. The pres-

ence of a Rydberg excitation and its strong interaction with
nearby atoms can alter the optical response of an array
within a blockade radius. Indeed, it was previously shown
how external control of an ancillary Rydberg atom and
subsequent measurements can produce interesting quantum
states of light [26]. Here, our goal is to have the Rydberg
excitation be generated by incoming photons themselves in
order to realize strong, coherent photon-photon inter-
actions. Instead of typical REIT, we consider an alternative
Rydberg dressing regime [40,41]. We note that REIT in
arrays [33] is highly complementary to our approach; single
photons can switch the system from being transmitting to
reflecting in REIT, and from reflecting to transmitting in
our case. However, as we discuss later, our scheme
circumvents an important source of error in the implemen-
tation of a single-photon switch.
The dressing operates in the regime jδcj ≫ Ωc ≫ Ω0, jδj.

This allows the probe to drive population from jgi to jei
(possibly large for the strong driving regime considered
later), while jei-jri transitions induced by the control field
remain virtual and their effect treatable perturbatively.
For just a single atom in jei, the control field induces an
ac-Stark shift Δac ≈ Ω2

c=δc − Ω4
c=δ3c, to order Ω4

c. We will
consider two scenarios in which the dressing is applied. In
the first, a probe acts on all atoms beginning in jgi, and the
dressing interaction modifies the ac-Stark shift for two
nearby jei atoms. In the second, a single Rydberg
excitation is first created in a separate photon storage
step. The dressing then suppresses the ac-Stark shift
for any nearby jei atom. The effective interaction takes
the respective forms V̂ee

Ryd ≈
P

i≠j VΘðRb − rijÞσ̂eei σ̂eej or

V̂re
Ryd ≈

P
i≠j VΘðRb − rijÞσ̂eei σ̂rrj , where we approximate

the spatial dependence by a step function [42]. The strength
of V is mainly limited by laser power, while the blockade
radius Rb depends on detuning δc and the C6 coefficient.
We will largely work in the simplified limit where
V → ∞, but discuss corrections as relevant. We also apply
the convention that Θð0Þ ¼ 1; e.g., nearest neighbors are
blockaded when Rb ¼ d.
Optical nonlinearities in the weak driving limit.—We

now consider a weak resonant (Ω0=Γ0 → 0, δ ¼ Δkk¼0)
Gaussian input probe beam with w0=d ¼ 0.35N, so that
diffraction from the array edges is negligible, and use
Eq. (4) to evaluate the second-order correlation function

gð2ÞR ¼ hÊ†
RÊ

†
RÊRÊRi=hÊ†

RÊRi2. gð2ÞR characterizes the like-
lihood of immediately detecting a second reflected photon,
given detection of a first. Using the dressing interaction

V̂ee
Ryd, we calculate g

ð2Þ
R in a two-excitation truncated Hilbert

space [42]. Here and in all subsequent calculations, we
take d ¼ λ0=2.
In Fig. 2(a), we plot gð2ÞR versus the squared ratio of

blockade radius to beam waist ðRb=w0Þ2 for an Na ¼ 162

array and V → ∞. gð2ÞR is already remarkably reduced from
unity when Rb ∼ w0, and this “antibunching” becomes

perfect (gð2ÞR → 0) as Rb increases further. This impossibi-
lity of reflecting two photons arises because the first
reflected photon must have originated from an excited
atom, but V̂ee

Ryd prevents the excitation of another nearby
atom, effectively punching a hole of radius Rb in the mirror
[Fig. 2(b)]. Without Rydberg interactions, the first reflected

photon only produces a single-atom hole, such that gð2ÞR ∼
ð1 − 1=NiÞ2 [42], where Ni ∼ πw00

2=d2 is approximately
the number of atoms illuminated by the beam [inset of

Fig. 2(a)]. Here, gð2ÞR ∼ 1 implies that the first reflected
photon has negligible influence on a second photon; i.e.,
the mirror is highly linear.
These results suggest that a blockaded 2D array is the

“ultimate” nonlinear element. It is lossless, unable to scatter
light into undesired modes, and allows for 100% efficient
atom-light interactions (as evidenced by perfect reflec-
tance), but retains the nonlinearity of an ideal two-level
system. We now utilize these concepts to realize a high-
fidelity single-photon switch, where instead of responding
to weak classical light, the system now explicitly achieves
strong interactions between individual photons.
Gate protocol.—We first summarize the main steps of

the single-photon switch. Here, the presence (absence) of a
first “gate” photon conditions the array to be transmitting
(reflecting) for a subsequent “signal” photon. This switch
can be directly converted into a photon-photon gate with an
additional beam splitter, which converts the propagation
direction into a conditional phase. First, the gate pulse,
which consists of either zero or one photon, is split and sent

101 102
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0 0.5 1 1.5 2
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FIG. 2. (a) Second-order correlation function in reflection gð2ÞR
versus the squared ratio of blockade radius to beam waist

ðRb=w0Þ2. Inset: gð2ÞR without Rydberg interactions versus the
approximate number of illuminated atoms Ni ¼ πw2

0=d
2 for

linear array size N ∈ ½4; 15�. The behavior is modeled well by

gð2ÞR ∼ ð1 − 1=NiÞ2 (solid line). (b) After detecting a first reflected
photon, a hole of blockade radius Rb is effectively punched in the
atomic mirror.
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toward the array from both directions, and stored by
applying a resonant control field (δc ≈ −δ) to create zero
or one Rydberg excitation [Fig. 3(a)]. Afterward, the
control field is detuned to implement Rydberg dressing.
The signal photon is finally sent from one direction with a
frequency adjusted to compensate the single-atom Stark
shift induced by the control field. The signal then sees
either a perfect resonant mirror or a large transmitting hole,
depending on the gate photon number.
We now analyze each step separately. As in other works

[7,59], we consider the limit to fidelity arising solely from
the finite blockade radius, rather than limited array size.
For the storage of the gate pulse, an error of 1 − η ≈
CsðdÞλ40=w4

1 [20] arises due to its finite beam waist w1,
where CsðdÞ is a lattice-constant-dependent coefficient.
This equation states that collective behavior of the array
reduces if the beam illuminates too few atoms. Sending in
the gate pulse from both directions is needed to achieve
near-unity efficiency, as the time-reversed process of
photon emission [20,60] naturally generates an outgoing
photon in both directions. (One-sided illumination would
yield a maximum 50% efficiency.)
Now the Rydberg dressing is turned on. Without a gate

photon, all atoms are in state jgi, and the dressing has no
effect. An incoming signal photon with waist w2 then sees a

mirror with a reflectance error due to focusing of
1 − R ≈ CRðdÞλ40=w4

2. On the other hand, a gate photon
is stored as a delocalized Rydberg excitation jΨi ¼P

i ciσ̂
rg
i jgi, where the state amplitudes follow the

Gaussian beam profile ci ∝ e−jρij2=w2
1 . The Rydberg exci-

tation itself will not interact with the subsequent signal
photon on the jgi-jei transition and acts as a single-atom
transparent hole. A dressing interaction V̂re

Ryd with infinite
strength V → ∞would further extend the radius of the hole
to Rb. While here the Rydberg excitation and the blockade
radius have the same effect of creating a transparent hole, in
REIT, the blockade radius instead would be reflecting [33],
while the transparent stored excitation serves as an unde-
sired scattering defect for the signal photon.
As the stored Rydberg excitation is static, the signal

photon response is linear optical. Its transmittance T is
given by the weighted average [42]

T ¼ hÊ†
TÊTisc

hÊ†
T;inÊT;inisc

¼
X

i

jcij2T̄ðri; w2; RbÞ; ð6Þ

where T̄ðri; w2; RbÞ is the transmittance of an array with a
hole of radius Rb centered on atom i, accounting for the fact
that the stored excitation is in a delocalized superposition
with weights jcij2 [Fig. 3(a)]. Intuitively, efficient trans-
mission requires that the uncertainty of the hole position
and the beam waist of the signal photon are small,
w1;2 ≲ Rb.
Next, we numerically optimize the overall fidelity

of the switch. Here, our only approximation involves the
modeling of the Rydberg dressing interaction as V̂re

Ryd ≈P
i≠j VΘðRb − rijÞσ̂eei σ̂rrj with V → ∞, while the storage

efficiency η and conditional reflectance and transmittance
R, T depending on the gate pulse are evaluated fully
numerically [42]. The total switch error ϵ is the maximum
error between storage/transmission and reflection,
ϵ ¼ maxð1 − ηT; 1 − RÞ. Taking a 41 × 41 array, we plot
the optimal beam waists wopt

1;2 and minimal errors in
Figs. 3(b) and 3(c), respectively, versus Rb. Separately,
using a toy model based on the considerations above, we
derive an analytical approximation of the error [42]

ϵoptðRb; dÞ ≈ C
½1þ logðRb=dÞ�2

ðRb=dÞ4
; ð7Þ

which agrees well with full numerics. Notably, the R−4
b

scaling significantly outperforms the best gate scaling ∝
R−3=2
b in a disordered REIT ensemble [7]. In Ref. [42], we

show that this scaling can be realized in realistic settings,
accounting for a finite Rydberg interaction strength and
realistic potential shape. Finally, although we have taken a
large array to isolate the scaling with Rb, we also numeri-
cally analyze a small array, which exhibits an additional
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FIG. 3. (a) Schematic of switch protocol. Left panel: a gate
pulse (red arrows) consisting of zero (0) or one photon (1) is
stored in the Rydberg level via a resonant control field (blue
arrow). Afterward, the control field is far detuned to induce
Rydberg dressing. A resonant signal photon (green arrows) is
then sent from one direction, and depending on the gate photon
number is either reflected (0, middle panel) or transmitted (1,
right). Transmission occurs as the stored Rydberg excitation
punches a hole of radius Rb in the array. The Rydberg excitation
and hole center are delocalized over a length ∼w1 corresponding
to the gate beam waist, roughly illustrated by the off-center hole
in transmission. (b) Optimal beam waists for the gate (red) and
signal (green) photons that yield the minimal switch error. The
dashed line corresponds to an analytical approximation,
Eq. (S.13) in Ref. [42]. (c) Optimal switch error ϵopt versus
blockade radius Rb=d, along with the analytical approximation
Eq. (7) (dashed line).
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error due to the beams extending beyond the array. We
find that a total error of 1% is already achievable with a
7 × 7 array.
Strong driving limit.—We now consider the nonlinear

resonant (δ ¼ Δkk¼0) response of an array versus arbitrary
Rb and coherent state driving power, but within the pre-
viously discussed regime of validity of the dressed inter-
action V̂ee

Ryd.We focus on the reflectance and the photon loss
K ¼ 1 − R − T, the fractional intensity scattered intomodes
beyond the reflected or transmitted Gaussian fields. We first
present numerical results for Na ¼ 16 and Na ¼ 36 square
arrays.We directly integrate in time Eq. (1) to find the steady
state density matrix (except for the specific case ofNa ¼ 16
and Rb ¼ 0 where we use an equivalent quantum jump
approach [61]). This calculation involves no approximations
beyond utilizing an infinite blockade strength V → ∞ to
eliminate impossible-to-excite basis states. In Figs. 4(a) and
4(b), we see that the reflectance monotonically decreases
with increasing Ω0 for all blockade radii. This naturally
arises from the saturation of the (Rydberg dressed super-)
atoms. In contrast, the photon loss varies nonmonotonically

and depends strongly on Rb [Figs. 4(c) and 4(d)].
Furthermore, the maximum loss Kmax occurs at some
driving strength jΩmax

0 j, with both values depending non-
trivially on Rb.
We develop an approximate model of this quantum

many-body system in terms of transmitting or diffracting
holes punched into a classical mirror [final panel of
Fig. 4(e), where red and blue atoms illustrate effectively
removed atoms and remaining mirror atoms, respectively].
This assignment proceeds in a series of steps starting with
all atoms with no assigned state. Then, regions of radius
Rb are randomly selected and assigned to be removed or
kept depending on the local probe field intensity, which
dictates their probability of saturation [42]. Once all atoms
have been assigned [Fig. 4(e)], we calculate the corre-
sponding classical linear loss and reflectance of this
particular configuration, repeating and averaging over
∼5000 configurations to obtain the loss and reflectance
of the system. This semiclassical model captures remark-
ably well the full system behavior, as the solid lines
illustrate in Figs. 4(a)–4(d). If one further assumes that
the system roughly consists of Nd independent and non-
overlapping blockade regions, which each have radius Rb
and see equal Rabi frequencies Ω, and neglects corrections
associated with finite array size, this model predicts a
maximum loss of Kmax ¼ ð1 − N−1

d Þ=2 [42]. In particular,
the loss vanishes when the system is fully blockaded and
allows only a single excitation (Nd ¼ 1).
Conclusions and outlook.—2D atomic arrays with

Rydberg interactions constitute a powerful platform for
quantum nonlinear optics and enable a gate with an error
scaling better than that of a disordered ensemble. This work
should stimulate immediate possibilities for experiments,
such as in quantum gas microscope setups, where efficient
reflectance [22] and Rydberg dressing [40,41] have already
been separately demonstrated. Although we have focused
on 2D arrays here, we anticipate that studying quantum
nonlinear optics in arrays more broadly will be a rich area
of research, giving rise to other enhanced protocols and
novel phenomenology.
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