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The increased phase sensitivity of N00N states has been used in many experiments, often involving
photon paths or polarization. Here we experimentally combine the phase sensitivity of N00N states with the
orbital angular momentum (OAM) of photons up to 100 ℏ, to resolve rotations of a light field around its
optical axis. The results show that both a higher photon number and larger OAM increase the resolution and
achievable sensitivity. The presented method opens a viable path to unconditional angular supersensitivity
and accessible generation of N00N states between any transverse light fields.
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During the past few decades, N00N states have been the
focus of several studies where their potential was explored
in different metrological applications [1–4]. Specifically, a
N00N state refers to an extremal superposition of N quanta
between two orthogonal modes, i.e., ð1= ffiffiffi

2
p ÞðjN; 0i þ

j0; NiÞ [3]. These states owe their usefulness to an
increased phase sensitivity that an N-photon Fock state
has in comparison to a single photon, or more classical
states of light. The increased phase sensitivity means that a
phase ϕ affects the Fock state jNi N times, changing the
state to eiNϕjNi, whereas classical states of light would
only gain the phase ϕ [3]. This increase in phase sensitivity
has been utilized in many proof-of-principle experiments,
most commonly by preparing two photons in a super-
position of two paths [1] or polarizations [2]. One notable
example is the demonstration of an unconditional quantum
advantage in sensitivity, using two-photon polarization
N00N states [5].
Similarly to the phase sensitivity scaling with a photon

number, the sensitivity in rotation measurements around the
optical axis scales with the amount of helical twistedness in
the wavefront of the light used [6]. This sensitivity is related
to the rotational symmetry of the helically twisted wave-
front of a light beam with nonzero orbital angular momen-
tum (OAM). The amount of wavefront twistedness, or
OAM, a photon can have is quantized to integer multiples l
of ℏ, and is theoretically unbounded [7], leading to a
theoretically unbounded increase in measurement sensitiv-
ity. Experimentally, values of up to 10 010 quanta of OAM

were already demonstrated [8]; however, this value is
bounded by the finite aperture of the optical system [9].
Theoretical and experimental studies have examined

methods of combining the increased phase sensitivity of
quantum states and the optimal rotation sensitivity of light
beams with large OAM [10–14]. In these studies however,
instead of experimentally implemented twisted N00N
states, the authors used either squeezed light states, light
directly from a spontaneous parametric down conversion
(SPDC) source, or multiple paths for the photons with
different OAM values to travel. These implementations
lack the robustness and simplicity of a single-path oper-
ation which can be achieved with the recently introduced
method for bunching photons into different OAM N00N
states [15].
In this study, we experimentally demonstrate an

increased rotation sensitivity of twisted N00N states along
a single path. With our method, we are able to show the
increased rotation sensitivity using N00N states with
photon numbers 1 and 2, and OAM values up to 100 ℏ.
Our results show that twisted two-photon N00N states
have the potential for an angular uncertainty scaling
∝ ð1=lNÞ, whereas classical light is limited to a scaling
∝ ð1=l ffiffiffiffi

N
p Þ [10,13]. Although the amount of OAM is

limited by the physical aperture, increasing the number of
photons in a twisted N00N state has the potential to surpass
any classical angular resolution limit. Due to the simplicity
of the presented method, spatial mode N00N states with
large OAM values and high efficiencies are achievable even
with current technologies. As such, our work opens up
novel ways to generate N00N states invoking the transverse
spatial degree of freedom and offers a path to unconditional
angular supersensitivity.
To create a two-photon twisted N00N state, two photons

that have orthogonal transverse-spatial structures but are
otherwise indistinguishable need to be brought into the
same beam path. A unitary that transforms the modes into a
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mutually unbiased basis (MUB), i.e., a Hadamard operation
Ĥ2, then leads to a bunching of the two photons into
the original spatial structures [15]. This interference is
analogous to the well-known Hong-Ou-Mandel inter-
ference realized by a beam splitter transformation [16].
However, since the beam-splitter-like transformation Ĥ2 is
unitary, the two photons stay orthogonal in a certain basis

Ĥ2j1; 1il;−l ¼ 1ffiffiffi
2

p ðj2; 0il;−l − j0; 2il;−lÞ ¼ j1; 1iM1;M2
;

where Mi refer to the modes of another MUB of the OAM
modes fl;−lg. Because of this feature, it is possible to
include the beam-splitter-like operation into the state
generation, before bringing the photons into the same
beam path, while still achieving the same two-photon
bunching and, thus, the same two-photon twisted N00N
state. Interestingly, for larger photon numbers the process
generates Holland-Burnett states that are also capable of
overcoming the shot-noise limit [17].
To experimentally verify the efficacy of this method, we

use an SPDC source to generate photon pairs and the setup
shown in Fig. 1 (see Supplemental Material for details
[18]). The photon pair is coupled out of single-mode fibers
onto two separate regions of a spatial light modulator
(SLM), as shown on the left side of Fig. 1, where the
photons are structured using holographic phase and ampli-
tude modulation [19,20]. The structured photons are then
brought to the same path with a beam splitter to enable
bunching into OAM structures. To measure the two-photon
state, a second beam splitter probabilistically separates the
photons, and a second SLM (SLM2) is used in conjunction
with two single-mode fibers to filter the spatial structures of
the photons independently [21,22]. Both of the SLMs that
were used were wavefront corrected [23]. For single-
photon N00N states, only one input and output fiber were
used, and the other photon was detected at the two-photon
source, to herald a single-photon state [24].

To confirm that the photons bunch into a N00N state, we
first prepare a two-photon N00N state with an OAM
value of l ¼ �1, and verify its quantum correlations
using an entanglement witness [25,26]. Measuring the state
in all three MUBs, we achieve a witness value of
w ¼ 2.92� 0.02, which is greater than the maximal value
of w ¼ 1 for separable states and close to the maximum
value of w ¼ 3 of the witness for maximally entangled
states.
After this initial confirmation, we proceed to examine the

angular resolution and sensitivity of these OAM N00N
states using our measurement scheme. In these measure-
ments, we prepare heralded single photons and two-
photon N00N states with OAM values jlj ¼ f1; 2; 3; 5;
10; 25; 50; 100g. For jlj < 10, we use mode carving [19]
and intensity flattening [21] to create and measure the
structures, respectively. The amplitude modulation imple-
mented in these procedures is needed to get as close as
possible to the MUB states of OAM light fields. The OAM
states have a complex field structure ElðθÞ ∝ eilθ, where θ
is the azimuthal coordinate. Hence, the MUB structures are
of the form EM1=M2

ðθÞ ∝ ðeilθ � e−ilθÞ and are often called
petal beams [27]. Examples of these structures for l ¼ �2
are shown in the insets of Fig. 1. When generating photons
with jlj ≥ 10, no amplitude modulation is required as the
spatial structures are sufficiently filtered by the limited
aperture of our system. Thus, simple phase imprinting [20]
and phase flattening [22] are used to generate and measure
the desired modes, respectively.
To demonstrate angular superresolution, we simulate the

rotation of our photon structures by rotating the measure-
ment holograms on SLM2. As with the more common two-
photon Mach-Zehnder interferometer, a second Hadamard
transformation is needed to detect the phase change. In the
case of OAM modes, the second Hadamard transformation
can be performed in the measurement by simply projecting
the photons onto the petal mode basis (see Supplemental
Material [18]). Hence, the two-photon state was measured

FIG. 1. Conceptual image of the experimental setup. Two holograms are used on the first SLM (SLM1) to imprint the wanted
structures onto each photon, independently. The two photons are then overlapped using a beam splitter, to enable photon bunching into
the same spatial structure, hence, allowing for a single beam operation when probing a sample. To measure the two-photon state, the
photons are separated with a beam splitter and sent to SLM2 where another set of holograms are used to measure the structure of each
photon (see main text for details). The insets show an example of the holograms displayed on SLM1 to generate an OAM N00N state
with l ¼ �2, an example of a sample position, and the transverse field structures the photons have at different points of the setup,
visualized by a two-dimensional colormap (see color bar on right).
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by projecting the photons on orthogonal petal structures,
which can only result in an interference curve with perfect
visibility in the case of bunching. Interestingly, projecting
both photons on identical petal structures can produce a
perfect fringe visibility irrespective of bunching, although
with an increased amplitude in the case of bunching (see
Supplemental Material [18]).
Since rotating the light field by an angle φ induces a

phase eilNφ on an N-photon Fock state [10], the theoreti-
cally expected optimal detection rate is hM̂i ¼ ðM=2Þ
½1 − cos ð2NlφÞ�, where M is the number of repetitions
of the measurement and N is the number of photons used in
the N00N state. From the detection rate, the theoretical
scaling of the angular uncertainty can be expressed as

Δφ ¼ hΔM̂i
j∂hM̂i=∂φj ¼

1

2
ffiffiffiffiffi
M

p
Nl

; ð1Þ

which saturates the quantum Cramér-Rao bound. For deri-
vations of Eq. (1) and the bound, based on Refs. [10,28–
30], see Supplemental Material [18].
The rotation measurements with l ¼ f�1;�10;�100g

are shown in Fig. 2. The figure shows that increasing the
amount of OAM increases the achievable resolution, and
changing from a single-photon to a two-photon N00N state
doubles the resolution.
To further analyze the measured data, we estimate the

Fisher information and angular precision for each meas-
urement. Therefore, we first fit a curve to each set of the
measured data using a weighted nonlinear least squares fit
(each point is weighted by the reciprocal of the measured
variance). The fitted curve is

A
2

�
1 − cos

�
2Nl

π

180°
φ − c

��
þD; ð2Þ

where A is the amplitude of the cosine curve, D is the
offset, and c sets the position of 0° rotation. Hence,
½A=ðAþ 2DÞ� gives an estimate of the visibility of the
curve, based on the fit. For the single-photon measure-
ments, we obtain an average visibility of 0.999, whereas for
the two-photon measurements the corresponding value is
0.956 averaged over all measurements. The maximum
standard error for the visibilities is 0.011, calculated for
the two-photon l ¼ �100 state, from the confidence
intervals of the fitting parameters.
From these fits and the estimated system efficiencies

(around 0.015 for a single photon with l ¼ 1 and 0.002
when l ¼ 100) we are able to derive the expected Fisher
information (see Supplemental Material [18]). We also
calculate the angular uncertainty using

Δφ ¼ ΔMðφÞ
ANl π

180° j sin ð2Nl π
180°φ − cÞj ; ð3Þ

where ΔMðφÞ is the standard deviation for each measure-
ment angle calculated from around 25 repetitions,

depending on the photon number and OAM value. The
Fisher information and angular precision are shown in
Fig. 3 for l ¼ 100 and in the Supplemental Material [18]
for l ¼ 1.
Plots (a) and (c) in Fig. 3 show that the expected Fisher

information curves follow the reciprocal of the rotation
angle variance, meaning that the results are close to the
Cramér-Rao bound of our specific state measurement [4].
Similarly, the expected angular uncertainties mostly agree
with the measured angular uncertainties. This indicates that
the achieved precision is close to the maximum precision
bounded by Poissonian noise. The differences between the
expected curves and measured data stem from the limited
number of repetitions used to calculate the standard
deviation, the decoupling of the system during long
measurements, and differences in system losses due to
different bandwidths of our single-photon source and the
laser used in characterization. The change in precision

FIG. 2. Detected single photons and two-photon coincidences
as a function of rotation angle. The single photons were prepared
in the modes shown in the insets (insets show false-color images
of structures taken with camera and laser light), and the
corresponding two-photon N00N states were created by imprint-
ing the same structure on one photon and its orthogonal pair
(same structure rotated by 180°=2l) on the other. The plots in (a)–
(c) show single photon (two-photon) counts within integration
times of 2 s (3 s), 1 s (3 s), and 2 s (8 s) and OAM values of l ¼ 1,
10, and 100, respectively. The error bars have been calculated as
standard deviations from at least 19 repetitions of the measure-
ment at each point, and the solid lines are fits of the form shown
in Eq. (2). The decreased period between oscillations shows the
angular superresolution achieved with the two-photon N00N
states [31]. For the two-photon measurements, accidental
coincidences have been subtracted.
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caused by errors that were larger than Poissonian is
especially apparent with the l ¼ 100 measurements where
a small drift over time has a comparatively large effect on
the alignment of the small structures of the transverse field.
Finally, we compare the sensitivities that are achievable

with two-photon N00N states to single-photon sensitivities,
using different values of OAM. Figures 3(c) and 3(d) show
that the best angular precision tends to be found at the same
values of φ where the Fisher information is maximized.
Therefore, to quantify the achievable sensitivities with
different values of N and l, we take the four smallest
values of angular uncertainty Δφ from each measurement,
close to the point of maximum Fisher information. We then
calculate the reciprocal for each of these values and define
it as the sensitivity. To be able to compare sensitivities
between different measurements, we normalize them by
dividing each value Δφ by ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

AþD
p

=AÞ, which removes
the dependence of Δφ on the varying number of detections
in each measurement. These values are plotted in Fig. 4,
along with theoretically expected maximum sensitivities
for the measurement scheme used.
Fig. 4 shows that the measured two-photon states are

more sensitive than their one-photon counterparts, although
the theoretical scaling was not reached with two-photon
states with large OAM. This discrepancy is caused by the
nonperfect visibilities of the measured interference curves,
in addition to the increasing complexity of the structures
and their decreasing efficiencies, causing the alignment to
be more sensitive while requiring longer measuring times.
As a result, a slow misalignment over time has a larger
effect on the variability of detection rates over the repeated
measurements.
In the presented experiment, we created twisted one-

and two-photon N00N states and verified the scaling
they enable for angular resolution and sensitivity, when

increasing the photon number or OAM. In order to verify
these properties, we rotated the measuring hologram on a
SLM to simulate a rotation of the light field. Hence, the
method could be directly applied to precisely aligning two
rotational reference frames, e.g., in a communication
channel [13]. However, in order to apply the method for

FIG. 3. Fisher information and angular uncertainty for l ¼ 100 N00N states. On the upper row, the continuous green line is the Fisher
information multiplied by the estimate for the total number of heralded single photons (or photon pairs) before losses. The green crosses
are the reciprocal of the variance calculated from Eq. (3). On the bottom row, the continuous curves are calculated using Eq. (3) and
Poissonian errors calculated from the fit. The red crosses are the experimentally determined uncertainties, calculated using Eq. (3). Plots
(a) and (b) display the heralded single-photon data, and (c) and (d) contain two-photon data. In all graphs, the black dashed lines depict
the interference curves for reference. On the bottom row, the uncertainty values that have been circled are used for calculating the
respective sensitivities in Fig. 4.

FIG. 4. Measurement sensitivities of single-photon and two-
photon N00N states. The theoretical curves are calculated using
Poissonian errors and a visibility of 0.9999 for the cosine curve
introduced in Eq. (2). The crosses represent the four normalized
sensitivities calculated from the uncertainty values chosen from
each measurement. The mostly linear dependence of 1=Δφ on
OAM follows the scaling of angular uncertainty introduced in
Eq. (1).
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measuring rotations caused by a separate system, the
probed sample needs to be the one providing an
OAM-dependent phase onto our two-photon state. This
could be achieved by embedding an image rotator (e.g., a
Dove prism) into the object whose rotation we want to
measure, or by probing samples that interact with the N00N
state by inducing an OAM-dependent phase which is
contingent upon some property of the sample. Hence,
the scheme is not restricted to only measuring rotations
of a light field or reference frame, but can be used to
measure any OAM-dependent phase changes. Additionally,
since adding photons into the N00N state can be done
irrespective of the aperture of the system, the increased
angular resolution provided by a N00N state might be
beneficial in tasks with a limited aperture size. However, in
order to push the limits of achievable sensitivity with this
measurement scheme, the system losses need to be reduced
and a more appropriate estimator for the rotation angle
should be devised [5,32].
In summary, we showed that by structuring and over-

laying two photons, a high-fidelity two-photon N00N state
can be created between any two high-OAM spatial struc-
tures. With this method, we are able to bunch two photons
into modes with up to OAM 100 ℏ, with minimal experi-
mental complexity. For future implementations, improving
the method’s efficiency would be key in pushing the
achievable sensitivity. The current losses are caused by
the methods used for generation and detection, as well as
the probabilistic overlapping and separation of the photon
pair. To show a quantum advantage over a lossless classical
system with perfect visibility, the condition ηNV2N > 1,
introduced in references [5,31], needs to be met. With the
average visibility V ¼ 0.956 for our two-photon rotation
sensing, the single-photon efficiency needs to be η > 0.74
to overcome the shot-noise limit. However, the efficiency of
the system could be increased by using methods that are, in
principle, lossless for preparing and measuring the spatial
modes [33], and for combining the two photons into the
same beam path [34,35].
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