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Description of periodically and resonantly driven quantum systems can lead to solid state models where
condensed matter phenomena can be investigated in time lattices formed by periodically evolvingWannier-
like states. Here, we show that inseparable two-dimensional time lattices with the Möbius strip geometry
can be realized for ultracold atoms bouncing between two periodically oscillating mirrors. Effective
interactions between atoms loaded to a lattice can be long-ranged and can be controlled experimentally.
As a specific example, we show how to realize a Lieb lattice model with a flat band and how to control
long-range hopping of pairs of atoms in the model.
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Introduction.—In the last few decades, engineering of
elaborate optical potentials has been a prominent subject of
both theoretical and experimental research in ultracold atoms
[1,2]. Recent experimental techniques enable not only
creation of periodic optical potentials of various geometries
[3,4] but also manipulation of parameters of the effective
models and introduction of artificial gauge fields [5]. The
latter allows one to realize topologically nontrivial energy
bands, which are the cornerstone of topological insulators
and quantum Hall systems [6]. The real space topology
proves to be equally important—for example, it has been
shown that global properties of spinless particles on the
Möbius ladder can be locally described by a non-Abelian
gauge potential [7,8] and that the quantum Hall effect is
forbidden on nonorientable surfaces [9]. Unfortunately,
realization of nontrivial real space topologies can be chal-
lenging. Although it has been shown that topologically
nontrivial one-dimensional ladder geometries can be imple-
mented by using a synthetic dimension [10,11], higher
dimensional systems have remained elusive so far.
On the other hand, recently there has been an increasing

number of theoretical works on time crystals [12–41],
followed by experimental demonstrations [42–51] and
modeling of crystalline structures in periodically driven
systems [52–57] (for reviews see [58–61]). The latter opens
a path to realization of temporal analogs of condensed
matter physics and exploration of novel phenomena present
exclusively in the time dimension. In particular, in this Letter
we show the construction of two-dimensional inseparable
time lattices that naturally entails the Möbius strip geometry.
Specifically, we identify reduction of the description of
atoms resonantly bouncing between two periodically oscil-
lating mirrors to the tight-binding Hamiltonian, where
particles can tunnel between localized Wannier-like wave

packets that evolve periodically along classical resonant
trajectories. The crystalline structure corresponding to the
tight-binding Hamiltonian can be observed not in space
but in the time domain. That is, if we locate a particle
detector close to a resonant trajectory, the dependence of
the probability of clicking of the detector as a function of
time reproduces a cut of the crystalline structure described
by the model [61]. This reflects the fact that, in time crystals,
the roles of time and space are interchanged.
In the following, we show how to realize tight-binding

models on a two-dimensional (2D) crystalline structure
on the Möbius strip in the time domain. We propose a
universal setup where the emergent lattice geometry can be
shaped almost at will depending on the driving protocol of
the mirrors. As a particular example, we choose the Lieb
lattice with a flat band [62–66] where dynamics of atoms is
governed solely by interactions. We stress that the effective
interactions of the model are long-ranged and can be
experimentally controlled. This creates a unique platform
to study exotic flat band many-body physics. In the next
sections, we describe the main elements of the theoretical
approach, leaving the details for [67].
Möbius strip geometry.—Let us start with a classical

particle bouncing between two static mirrors located at x ¼ 0
and x − y ¼ 0, which form a wedge with the angle 45°
(Fig. 1). In the gravitational units [68,69], the Hamiltonian
reads H0 ¼ ðp2

x þ p2
yÞ=2þ xþ y with the constraint

y ≥ x ≥ 0 coming from the hard wall potential of the mirrors
(for a Gaussian shaped mirror potential see [39]). When a
particle collides with the vertical mirror, its momenta are
exchanged px⇆py, whereas when a particle hits the other
mirror, py remains the same but px → −px; see Fig. 1.
To find how to describe a particle confined in the wedge

with the angle 45°, one can start with the problem of
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two perpendicular mirrors. When the angle between two
mirrors is 90°, the system is separable in the Cartesian
coordinate frame [70,71] and it is convenient to switch
to the action-angle variables Iα and θα with α ¼ x, y.
Then, the Hamiltonian H0 depends on the actions Iα
only [72,73]. The dynamics of the angles is given by
Hamilton’s equations _θα ¼ ∂H0=∂Iα ≡ ΩαðIαÞ, where
ΩαðIαÞ are frequencies of motion along the x and y
directions. Since the actions Iα are constants of motion,
the solution for the angles is trivial: θαðtÞ ¼
ΩαðIαÞtþ θαð0Þð mod 2πÞ. Motion of a particle is con-
fined on a surface of a two-dimensional torus. In this Letter,
we consider periodic trajectories of a particle that are
symmetric with respect to the vertical mirror. It implies that
the initial conditions correspond to equal energies of the
x and y degrees of freedom, i.e., Ex ¼ Ey (or Ix ¼ Iy) and
thus ΩxðIxÞ ¼ ΩyðIyÞ. To reduce the number of frequen-
cies, we perform a canonical transformation from ðIα; θαÞ
to new variables I� ¼ Iy � Ix and θ� ¼ ðθy � θxÞ=2 [67].
The equations of motion in such variables have the form
_I� ¼ 0, _θ− ¼ 0, and _θþ ¼ ΩþðIþÞ, where I− ¼ 0 and the
value of the action Iþ determines the frequency of a periodic
orbit [74]. Thus, θþðtÞ ¼ ΩþðIþÞtþ θþð0Þ describes
motion along a periodic orbit while θ− is a constant.
Let us come back to the wedge with the angle 45°,

where the motion is restricted to y ≥ x (or equivalently
0 < θþ ≤ π). When a particle bounces off a vertical mirror,

the momenta are exchanged px⇆py. For Ex ¼ Ey, we have
px ¼ −py and therefore pα → −pα at y ¼ x, or, in other
words, θ� → π − θ� at θþ ¼ π. The latter identifies points
fθþ ¼ π; θ−g ¼ fθþ ¼ 0; π − θ−g and defines the Möbius
strip geometry (see Fig. 1). In order to realize condensed
matter physics on the Möbius strip, oscillations of the
mirrors will be turned on. We will see that resonant
bouncing of a single atom or a cloud of atoms between
the oscillating mirrors can be described by solid state
models. The emerging crystalline structures will be
observed not in space but in the time domain.
Oscillating mirrors.—Let us assume that the mirror

located around x ¼ 0 oscillates in time like fxðtÞ ¼
−ðλ1=ω2Þ cosðωtÞ − ðλ2=4ω2Þ cosð2ωtÞ, while the vertical
one like fy−xðtÞ ¼ ðλ3=4ω2Þ cosð2ωtþ ϕÞ, where λ1;2;3 are
amplitudes and ϕ is a constant phase. It is convenient to
switch to the frame oscillating with the mirrors. Then, the
mirrors are static, and the Hamiltonian of an atom reads
H ¼ H0 þ ðxþ yÞf00xðtÞ þ yf00y−xðtÞ; see [67]. We focus on
the resonant driving of an atom where the frequency ω of
the oscillations of the mirrors fulfills the s∶1 resonant
condition, i.e., ω ¼ sΩþðI0þÞ, where s is an integer number,
I0þ is the resonant value of the action Iþ, and I− ¼ I0− ¼ 0.
In order to describe classical motion of an atom close to

resonant trajectories, one may apply the secular approxi-
mation approach, which in the action-angle variables and in
the moving frame Θþ ¼ θþ − ωt=s and Θ− ¼ θ− leads to
the following effective Hamiltonian [67]:

Heff ¼ −
P2
− þ P2þ
2jmeff j

−
λ2
2ω2

cos ð2sΘþÞ cos ð2sΘ−Þ

−
2λ1
ω2

cosðsΘþÞ cosðsΘ−Þ þ
λ3
4ω2

cos ð2sΘþ þ ϕÞ;
ð1Þ

where P� ¼ I� − I0� and jmeff j ¼ ð3I0þÞ4=3=ð2π2Þ1=3. The
Eq. (1) Hamiltonian describes a particle with the negative
effective mass −jmeff j in the presence of an inseparable
lattice potential that is moving on the Möbius strip because
at Θþ ¼ π there are the flips Θ� → π − Θ�. Different
parameters of the mirrors’ oscillations allow one to realize
different crystalline structures of the effective potential in
Eq. (1). For example, for λ3=λ1 ¼ 4, λ2 ¼ 0 and ϕ ¼ 0, a
honeycomb lattice [3,4] can be realized [Fig. 2(a)], while
for λ2=λ1 ¼ 4, λ3=λ2 ¼ 1.62 and ϕ ¼ π=4, the Lieb lattice
with a flat band emerges [Fig. 2(b)]. In the following, we
focus on the Lieb lattice case as a concrete example.
To obtain a quantum description of a particle resonantly

bouncing between the mirrors, one can either quantize
the classical Hamiltonian [Eq. (1)], i.e., replace P� →
−i∂=∂Θ�, or apply the fully quantum secular approxima-
tion method for the Floquet Hamiltonian HF ¼ H − i∂t
(see [67]). The former is very useful to understand what
kind of effective behavior we can expect. The latter is a

FIG. 1. (a) A geometry of the system where a particle in the
presence of the gravitational force F⃗g is bouncing between two
mirrors (thick red lines) forming a 45° wedge. (b) If the mirrors do
not oscillate, a set of trajectories (a sample trajectory shown in
blue) corresponding to equal energies Ex ¼ Ey cover a region
with θ� ∈ ½0; πÞ. In a collision with the vertical mirror, i.e., at
θþ ¼ π, the momenta components of a particle are exchanged,
which reverses the direction of the momentum vector px;y→−px;y

because for Ex ¼ Ey we have px ¼ −py. This results in
θ� → π − θ�. These conditions identify points fθþ ¼ π; θ−g ¼
fθþ ¼ 0; π − θ−g and define the Möbius strip geometry (c).

PHYSICAL REVIEW LETTERS 127, 263003 (2021)

263003-2



more systematic quantum description that allows one to
easily incorporate the boundary conditions on the mirrors
and particle interactions, and we use it to obtain all
quantum results shown in this Letter. These two quantum
approaches agree very well with each other if I0þ ≫ 1.
We concentrate on an example where the effective

potential in the Eq. (1) Hamiltonian correspond to the
Lieb lattice [Fig. 2(b)]. The Lieb lattice is a Bravais lattice
with a three point basis, and therefore the lattice sites can be
labeled by a unit cell index j and an intra cell index
β ¼ 0;�; see Fig. 2(b). Description of the first energy
manifold of the effective Hamiltonian can be reduced to the
tight-binding model

HF ≈ −J1
X

i;β¼�
â†i;0âi;β − J2

X

hiji;β¼�
â†i;0âj;β þ H:c:; ð2Þ

where âi;β=â
†
i;β are bosonic operators that annihilate or

create a particle in the Wannier statesWi;βðΘþ;Θ−Þ. J1 and
J2 are intra- and intercell tunneling amplitudes, respec-
tively, cf. Fig. 2(b). As long as J1 ≠ J2, eigenvalues of
Eq. (2) form three separated bands, where the central one is
flat [66,67]. In the flat band, the group velocity is zero and
consequently the transport in the flat band is totally halted
unless we deal with a many-body system with interactions.
The Eq. (1) Hamiltonian indicates that in the moving

frame we deal with a crystalline structure in the fΘþ;Θ−g
space. In the tight-binding approximation [Eq. (2)], eigen-
states of an atom are superposition of the Wannier states
ψðΘþ;Θ−Þ ¼

P
i;β ci;βWi;βðΘþ;Θ−Þ. When we return to

the laboratory frame, no crystalline structure is observed in
the Cartesian coordinates x and y. However, if a detector is

located close to a resonant trajectory (i.e., we fix θþ and θ−
and I� ≈ I0�), then the dependence of the probability of
clicking of the detector as a function of time reproduces a
cut of the probability density in the fΘþ;Θ−g space, i.e.,
jψðΘþ;Θ−Þj2 ¼ jψðθþ − ωt=s; θ−Þj2. Different locations
of the detector (different θ�) correspond to different cuts
of the crystalline structure in the fΘþ;Θ−g space. Note that
such a crystalline structure in time is not a result of
spontaneous breaking of time translation symmetry. It is
a time lattice that emerges in the dynamics of the system
due to the external driving like in the case of photonic
crystals, which do not form spontaneously because periodic
modulation of the refractive index in space has to be
imposed externally.
Quantum many-body physics in the flat band.—In the

previous paragraphs, we have shown how to realize an
effective potential in the fΘþ;Θ−g space, where a localized
particle tunnels between the Wannier states Wj;βðΘþ;Θ−Þ
centered at the sites of the Lieb lattice [Eq. (2)]. The
eigenstates of the flat band can be chosen as the maximally
localized Wannier states wj. For J1=J2 ≫ 1, the Wannier
states wj spanning the flat band can be approximated by
superpositions of two localized wave packets, wj ≈
ðWj;þ −Wj;−Þ=

ffiffiffi
2

p
, for the bulk states or wj ≈Wj;� for

the states close to the edge of the Möbius strip [75];
see Fig. 3.
Hopping of bosons in the flat band can only happen if

there are interactions between them. In ultracold atoms, the
interactions are zero-range and we assume that interaction
energy per particle is much smaller than the energy gaps
between the flat and adjacent bands. Then, we may still
restrict to the flat band only and the effective many-body
Floquet Hamiltonian reads [61]

HF ¼ 1

sT

Z
sT

0

dt
Z

dxdyψ̂†
�
H − i∂t þ

g0
2
ψ̂†ψ̂

�
ψ̂

≈
X

ijkl

Uijklb̂
†
i b̂

†
j b̂kb̂l þ const; ð3Þ

where H is the single particle Hamiltonian ψ̂ ≈
Psðsþ1Þ=2

i¼1 wib̂i with the bosonic operators ½b̂i; b̂†j � ¼ δij,
and Uijkl ¼ ðsTÞ−1 R dtg0uijklðtÞ with

uijklðtÞ ¼
Z

dxdyw�
i w

�
jwkwl: ð4Þ

In the laboratory frame, the Wannier states wiðx; y; tÞ of the
flat band are superpositions of localized wave packets
evolving periodically with the period sT. Indices i; j;…
label sites of the effective square lattice that correspond to a
unit cell index of the Lieb lattice, cf. Fig. 3. In the course
of time evolution, different localized wave packets can
overlap in the laboratory frame at different moments of
time. The strength g0 of the atom-atom interactions depends

FIG. 2. Examples of the effective potential in Eq. (1). Dark blue
color represents areas around maxima of the effective potential
that correspond to the lowest energies of Heff for a particle with a
negative effective mass. The geometry of the fΘþ;Θ−g space is
the Möbius strip geometry as in Fig. 1. (a) The effective potential
for λ3=λ1 ¼ 4, λ2 ¼ 0, and ϕ ¼ 0 creates a honeycomb lattice
structure. (b) Maxima of the effective potential for λ2=λ1 ¼ 4,
λ3=λ2 ¼ 1.62, and ϕ ¼ π=4 correspond to the Lieb lattice with a
well separated central flat band. A unit cell (red square) of the
Lieb lattice is composed of three sites. Inset: A tunneling
structure in the Lieb lattice.

PHYSICAL REVIEW LETTERS 127, 263003 (2021)

263003-3



on the s-wave scattering length and can be controlled by
means of the Feshbach resonance [76]. Suppose that g0 is
periodically modulated in time, i.e., g0ðtÞ ¼ g0ðtþ sTÞ.
The interaction strength g0ðtÞ can be turned on only for a
moment of time when specific Wannier states overlap in the
laboratory frame. Thus, we can engineer the interaction
coefficients Uijkl in the flat band system, Eq. (3), almost
at will, which allows one to explore different exotic flat
band models. Let us analyze what kinds of models are
attainable in the flat band of the Lieb lattice potential
presented in Fig. 2(b).
Even if localized wave packets belonging to Wannier

states wi, wj, wk, and wl overlap in the laboratory frame at a
certain moment of time, it does not necessarily mean that
the corresponding uijklðtÞ in Eq. (4) is not zero. An atom
that occupies a localized wave packet is characterized by a
quite well defined momentum and if the sum of the
momenta of two atoms before and after a collision at t
is not conserved, the corresponding uijklðtÞ vanishes. If,
however, uijklðtÞ does not vanish at a certain time moment
t, then we can get the value of the interaction coefficient
Uijkl as we wish by choosing an appropriate g0ðtÞ. In the
case of the flat band of the Lieb lattice presented in Fig. 2(b),
effective selection rules for nonvanishing uijklðtÞ are illus-
trated in Fig. 3(b). Corners of a symmetrically located
rectangle in Fig. 3(b) correspond to the same position in
the Cartesian space fx; yg but to four different pairs of the
momenta f�px;�pyg [67]. If at a certain t four localized
wave packets are at the corners of a certain symmetric
rectangle, then we have a guarantee that uijklðtÞ does not
vanish, which enables simultaneous hopping of two atoms
on the Lieb lattice. Note that two wave packets

corresponding to the same Wannier state are not necessarily
neighbors in the laboratory frame.
To sum up, apart from the simultaneous hopping of pairs

of atoms described in Fig. 3, on-site and long-range
density-density interactions can be present in the flat band,
but no density induced tunneling is allowed. Taking into
account all possible processes, a general many-body
effective Floquet Hamiltonian in the flat band becomes

HF ¼
X

i

Uin̂iðn̂i − 1Þ −
X

fijklg
Jijklb̂

†
i b̂

†
j b̂kb̂l; ð5Þ

where n̂i¼ b̂†i b̂i. The first sum describes the on-site inter-
actions with the coupling strengths Ui ¼ Uiiii, while the
second sum, with terms proportional to Jijkl¼4Uijklji≠j, is
responsible for the long-range density-density interactions
and the simultaneous hopping of pairs of atoms. In Fig. 3(c),
we illustrate simultaneous hopping of atoms by only two
lattice sites, and other possible kinds of hopping are shown
in [67]. Studies of many-body phases of the Lieb model we
describe here is beyond the scope of this Letter.
Conclusions.—In this Letter, we show that a very simple

setting of two oscillating mirrors has a potential for
realization of nonequilibrium many-body physics on
inseparable lattices with the Möbius strip geometry. Our
system reduces to a time lattice where localized wave
packets are moving along classical resonant orbits. By
controlling the periodic motion of the mirrors, one is able to
design arbitrary lattice geometries. We argue that the
effective interactions of the model can be exotic, long-
ranged, and experimentally tunable. In order to emphasize
these peculiar features, we focus on a flat band of the Lieb

FIG. 3. (a) Probability density (in the lab frame and in the Cartesian coordinates at t ¼ ωπ=5) of the Wannier states wi belonging to the
flat band of the effective Lieb lattice potential, cf. Fig. 2(b). Inset: An enlargement of four encountering localized wave packets
belonging to four different Wannier states: wi, wj, wk, wl. (b) Same as in (a) but in the fθþ; θ−g space. The Wannier states, enclosed by
rectangles, are either superpositions of two localized wave packets or just a single one at the edge of the Möbius strip. In the course of
time evolution, the entire structure is moving uniformly along the θþ axis and fulfills the Möbius strip boundary conditions. (c) The
hopping structure of the effective lattice of the flat band, where black dots correspond to the Wannier states wi, and arrows of the
same color indicate hoppings of atomic pairs. The horizontal direction of the lattice is related to the direction along the Möbius strip,
cf. Fig. 1(c). Note that for illustrative purposes we have only shown the hoppings along the smallest symmetric rectangles [cf. panel (b)]
that involve annihilation of one atom in a central (brown) site. Panels correspond to s ¼ 6, ω ¼ 0.315, λ1 ¼ 2.48 × 10−4,
λ2 ¼ 9.9 × 10−4, λ3 ¼ 1.61 × 10−3, and ϕ ¼ π=4 in Eq. (1).
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lattice with interaction induced long-distance simultaneous
hoppings of atomic pairs. Another unique property of our
construction is that the 2D time crystalline structures have
the geometry of the Möbius strip. It is known that the lack
of translational symmetry of the Möbius strip can change
the ground state and low energy physics properties of
many-body models [10]. Therefore, our results not only
open up new perspectives for the exploration of interaction
induced phenomena, such as exotic superfluids and super-
solids on a flat band or the strongly correlated constrained
dynamics in the strongly interacting models, but also
enable the study of topological effects due to the nontrivial
lattice geometry.
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