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The leading quantum electrodynamic corrections to the nuclear magnetic shielding in one- and two-
electron atomic systems are obtained in a complete form, and the shielding constants of 1H, 3Heþ, and 3He
are calculated to be 17.735 436ð3Þ × 10−6, 35.507 434ð9Þ × 10−6, and 59.967 029ð23Þ × 10−6, respec-
tively. These results are orders of magnitude more accurate than previous ones, and, with the ongoing
measurement of the nuclear magnetic moment of 3Heþ and planned 3He2þ, they open the window for high-
precision absolute magnetometry using 3He NMR probes. The presented theoretical approach is applicable
to all other light atomic and molecular systems, which facilitates the improved determination of magnetic
moments of any light nuclei.
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Introduction.—The chemical inertness of 3He atomic gas
and the absence of an electric quadrupole moment yield an
exceptional isolation of nuclear spins that form a macro-
scopic quantum state achieving long coherence times.
Because it can be hyper-polarized using laser optical
pumping techniques, resulting in a very stable and sensitive
probe to the magnetic field, the nuclear magnetic resonance
(NMR) magnetometry founded on 3He is of great interest
for different areas of physics and applied sciences [1]. In
particular, 3He gas cells have recently been used in several
fundamental physics experiments for their capability of
determining absolute field values, in the calibration of
magnetic sensors, e.g., in muon g − 2 measurements [2], in
searching for a permanent electric dipole moment [3], and
in the development of cryogenic NMR techniques for
new experiments on the electron and positron magnetic
moments [4,5]. For this reason, hyperpolarized 3He NMR
probes have been proposed as a new standard for absolute
magnetometry [5–7], and consequently, a high-precision
value of the helion nuclear magnetic moment μh would be
indispensable.
For the determination of μh, the NMR measurements of

3He performed with respect to H2 and H2O [8–12] have
been used to obtain the current CODATA value [13] with a
relative accuracy of 1.2 × 10−8. This approach, based on a
comparison to the proton magnetic moment μp, is limited
by the little-known magnetic shielding effects caused by
the surrounding particles (electrons, nuclei). To obtain
accurate shielding factors, we can consider using theoreti-
cal methods. Nonetheless, this possibility only applies to

small atomic and molecular systems, for which we can use
an approach based on nonrelativistic implementation of
quantum electrodynamics (NRQED). Such calculations in
H2 with an accuracy similar to the magnetic shielding of
3He performed in this work can lead to μh with relative
accuracy as high as of that of μp, i.e., 2.9 × 10−10 [14].
In another approach, the 3He magnetic moment is related

to that of the electron. This is achieved by measuring the
ratio of the magnetic moment of the 23S metastable state of
4He to the ground state of 3He [15], and, independently, by a
very recent measurement of the Breit-Rabi splitting of 3Heþ

in a Penning trap [16,17]. This latter experiment may
provide an improved result for μh in comparison to the
current CODATA value.
Finally, an effort is underway [14,16] to directly measure

μh in a cryogenic Penning trap using techniques similar to
those applied for the proton [18,19] and the antiproton [20].
The high-precision results of the magnetic shielding con-
stant obtained in this work provide the shielded magnetic
moment of 3Heþ and 3He at the accuracy of the measured
value of μh, which is a prerequisite for the realization
of 3He NMR probes as a new standard for absolute
magnetometry.
Magnetic shielding.—Let us recall the definition of

the nuclear diamagnetic shielding of a single atom
[21,22]. The coupling of the nuclear magnetic moment μ⃗
with the homogeneous magnetic field B⃗ modified by the
presence of atomic electrons can be parametrized in terms
of the nuclear magnetic shielding constant σ according to
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δH ¼ −μ⃗ · B⃗ð1 − σÞ: ð1Þ

In order to calculate accurately the parameter σ we employ
the so-called nonrelativistic QED [23], and assume the
expansion of σ as a double power series in the fine structure
constant α and the electron-nucleus mass ratio m=mN ,

σ ¼ σð2Þ þ σð4Þ þ σð5Þ þ σð6Þ þ σð2;1Þ þ σð2;2Þ þ σð4;1Þ þ…

ð2Þ

In this equation, σðnÞ ∝ αn coefficients are the non-
relativistic shielding, the relativistic, the leading QED,
and the higher-order QED corrections in the infinite nu-
clear mass approximation, respectively. The terms σðn;kÞ ∝
αnðm=mNÞk are corrections due to the finite nuclear mass.
The main advantage of this expansion is the possibility to
derive exact formulas for expansion coefficients in terms of
some matrix element with the nonrelativistic wave func-
tion, which can be accurately calculated.
In the case of one- and two-electron atomic systems all

lower-order contributions in Eq. (2) are known in the
literature. Namely, the formula for the leading term σð2Þ
valid for atoms

σð2Þ ¼ α

3m

�X
a

1

ra

�
ð3Þ

was first introduced by Lamb [21] and later generalized for
molecules by Ramsey [22]. The correction σð4Þ can be
found in Refs. [24,25] and references therein, while σð2;1Þ

and σð2;2Þ were derived in Ref. [26]. In contrast, QED
corrections until now have only been partially investigated
and therefore are presently the bottleneck of theoretical
predictions. There have been attempts [27] to include them
within the formalism based on the Dirac-Coulomb (DC)
Hamiltonian [28], but there is currently no adequate
formulation of the QED theory for many electron systems.
Meanwhile, for hydrogenic ions, Yerokhin et al. [29,30]
performed a nonperturbative numerical evaluation of one-
loop QED contributions and observed a slow numerical
convergence for the small nuclear charge Z. Therefore,
these results were supplemented by direct NRQED evalu-
ation of the leading QED correction ∼α5. However, some
effects due to the magnetic moment anomaly were omitted
there, which was the reason for small discrepancies with the
nonperturbative results for the medium-Z hydrogenlike
ions. For helium, only the leading QED logarithmic
correction ∼α5 ln α was obtained by Rudziński et al. in
Ref. [25]. In this Letter, we present the complete formulas
for σð5Þ, valid for one- and two-electron atomic systems,
which can be easily generalized to any light few-electron
system. They are supplemented by the numerical calcu-
lations performed for 1H, 3Heþ, and 3He, using explicitly
correlated exponential functions for the latter case, what

ensures high precision of numerical results. We will use
ℏ ¼ c ¼ ε0 ¼ 1 throughout the Letter and the CODATA
2018 values of physical constants [13].
NRQED approach.—In the NRQED formalism we can

include QED effects, coming from large photon momenta,
in the generalized Breit-Pauli Hamiltonian (see, e.g.,
Ref. [31]). For the case of a two-electron atomic system
coupled to a magnetic field B⃗, this effective Hamiltonian is
given by

HBP ¼
X2
a¼1

Ha þH12; ð4Þ

Ha ¼
π⃗2a
2m

−
π⃗4a
8m3

−
Zα
ra

−
eð1þ κÞ

2m
σ⃗a · B⃗a

þ e
8m3

fπ⃗2a; σ⃗a · B⃗ag −
e2

2

�
1

4m3
þ αM

�
B⃗2
a

þ eκ
8m3

fπ⃗a · B⃗a; σ⃗a · π⃗ag þ
Zαð1þ 2κÞ

4m2
σ⃗a ·

r⃗a × π⃗a
r3a

þ e
6m

�
r2E þ r2vp −

3κ

4m2

�
ð∇a × B⃗aÞ · π⃗a

þ 2πZα
3

�
3

4m2
þ r2E þ r2vp

�
δðr⃗aÞ; ð5Þ

H12 ¼
α

r
−
4πα

3

�
3

4m2
þ r2E þ

1

2
r2vp þ

ð1þ κÞ2
2m2

σ⃗1 · σ⃗2

�
δðr⃗Þ

þ α

4m2r3
½2ð1þ κÞðσ⃗1 · r⃗× π⃗2 − σ⃗2 · r⃗× π⃗1Þ

þ ð1þ 2κÞðσ⃗2 · r⃗× π⃗2 − σ⃗1 · r⃗× π⃗1Þ�

−
α

2m2
πi1

�
δij

r
þ rirj

r3

�
πj2

−
3αð1þ κÞ2

4m2

σi1σ
j
2

r3

�
ri1r

j
2

r2
−
δij

3

�
; ð6Þ

where r⃗ ¼ r⃗1 − r⃗2, π⃗ ¼ p⃗ − eA⃗ is the generalized momen-
tum in the external field, κ ¼ α=ð2πÞ is the magnetic
moment anomaly, and

r2E ¼ 3κ

2m2
þ 6F0

1ð0Þ ¼
2α

πm2

�
ln

m
2ϵ

þ 5

6

�
; ð7Þ

r2vp ¼ −
2α

5πm2
; ð8Þ

αM ¼ 4α

3πm3

�
− ln

m
2ϵ

þ 13

24

�
: ð9Þ

The parameters rE and αM are interpreted as the charge
radius and the magnetic polarizability of an electron,
respectively. They depend on ϵ, i.e., the photon momentum
cutoff being used as a regulator [32], and this dependence
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cancels out in the complete expression for any physical
quantity. The formula for r2E is derived from the known
radiative correction to electromagnetic form factors F1 and
F2 [32], and r2vp incorporates the corrections due to the
vacuum polarization. The formula for αM has for the first
time been presented in Ref. [30] and can be obtained in a
similar way as for the electric polarizability, denoted by χ,
in Ref. [33]. Without QED (r2E ¼ r2vp ¼ αM ¼ κ ¼ 0) HBP

is the standard Breit-Pauli Hamiltonian [34].
For the derivation of the magnetic shielding constant σ,

we consider Eq. (4) for an atomic system in a magnetic field
corresponding to the sum of the vector potential A⃗I due to
the magnetic moment μ⃗ of the nucleus, and A⃗E due to the
homogeneous external magnetic field B⃗, namely,

A⃗E ¼ 1

2
B⃗ × r⃗; and A⃗I ¼

1

4π
μ⃗ ×

r⃗
r3
: ð10Þ

Following Ramsey’s theory of the magnetic shielding
[22,35], we split the Hamiltonian HBP as

HBP ¼ H0 þ δHA⃗E¼A⃗I¼0
þ δHA⃗I;A⃗E¼0

þ δHA⃗E;A⃗I¼0

þ δHA⃗E;A⃗I
þOðA⃗2

I;EÞ; ð11Þ
where δH is treated as a perturbation to the nonrelativistic
HamiltonianH0, δHA⃗E¼A⃗I¼0

is independent of the magnetic

fields, δHA⃗I;A⃗E¼0
is linear in A⃗I , δHA⃗E;A⃗I¼0

is linear in A⃗E,
and δHA⃗E;A⃗I

is bilinear in both fields. Because we are only
interested in energy corrections that are proportional to
μ⃗ · B⃗, we write

δE ¼ hδHA⃗E;A⃗I
i þ 2

�
δHA⃗E;A⃗I

1

ðE0 −H0Þ0
δHA⃗E¼A⃗I¼0

�

þ 2

�
δHA⃗I;A⃗E¼0

1

ðE0 −H0Þ0
δHA⃗E;A⃗I¼0

�
þ…; ð12Þ

where 1=ðE0 −H0Þ0 is the reduced Green’s function, and
the ellipses denote terms that are not proportional to μ⃗ · B⃗
and will be discarded. The expectation values are taken
with respect to the ground electronic state of H0, which is
an S state in the case of hydrogen- and heliumlike systems.
The spherical symmetry then implies the relation μiBj ¼
δij=3μ⃗ · B⃗ allowing for a simple factoring of μ⃗ · B⃗ from
many terms appearing in Eq. (12), and σ is obtained
through the relation δE ¼ μ⃗ · B⃗σ.
Leading QED correction.—We derive the correction σð5Þ

for a heliumlike system, bearing in mind the corresponding
derivation of the Lamb shift [36]. Namely, σð5Þ is given by
the sum of the high σB and the low σA energy parts

σð5Þ ¼ σB0 þ σB1 þ σB2 þ σB3 þ σA1 þ σA2: ð13Þ

The high energy part is obtained as follows. σB0
corresponds to the helium Lamb shift [36] with the wave

function corrected by the effect of magnetic fields
in Eq. (3)

σB0 ¼
2α3

3m3

��
1

r1
þ 1

r2

�
1

ðE0 −H0Þ0
��

19

30
þ lnðα−2Þ

�

×
4Z
3
ðδðr⃗1Þ þ δðr⃗2ÞÞ þ

�
164

15
þ 14

3
ln α

�
δðr⃗Þ

−
7α3m3

6π
P

�
1

ðmαrÞ3
���

; ð14Þ

where Pð1=r3Þ is the Araki-Sucher term [36]. The next
parts are directly obtained from the NRQED Hamiltonian
in Eq. (4), and are the following:

σB1 ¼
α2

m3

�
20

9
lnðα−2Þ − 1361

540

�
hδðr⃗1Þ þ δðr⃗2Þi; ð15Þ

σB2¼−
α2

3m3

�
ðδðr⃗1Þ−δðr⃗2ÞÞ

1

ðE0−H0Þ

×

�
4p⃗2

1

3m
−
4p⃗2

2

3m
−
Zα
r1

þZα
r2

−
α

3r3
r⃗ ·ðr⃗1þ r⃗2Þ

��
; ð16Þ

σB3 ¼ −
3α2

16πm3

��
ri1r

j
1

r51
−
ri2r

j
2

r52

�ð2Þ 1

ðE0 −H0Þ
�
Zα

ri1r
j
1

r31

− Zα
ri2r

j
2

r32
þ α

riðrj1 þ rj2Þ
3r3

þ 2

3m
ðpi

1p
j
1 − pi

2p
j
2Þ
��

;

ð17Þ

where the second rank tensor is defined by ðpiqjÞð2Þ≡
ðpiqj þ pjqiÞ=2 − δij=3p⃗ · q⃗.
Analogously to the calculation of the Lamb shift [36], we

define the low-energy energy contribution as

EA ¼ −
2α

3π

�
ðπ⃗1 þ π⃗2ÞðH − EÞ ln 2ðH − EÞ

mα2
ðπ⃗1 þ π⃗2Þ

�
B
;

ð18Þ

where h…iB denotes the expectation value with respect to
the ground state with energy E of the Hamiltonian in the
presence of the magnetic field

H ¼ π⃗21
2m

þ π⃗22
2m

−
Zα
r1

−
Zα
r2

þ α

r

¼ H0 þ
1

3m
μ⃗ · B⃗U −

e
2m

L⃗ · B⃗ −
e

4πm
μ⃗ · U⃗; ð19Þ

where Li ¼ Li
1 þ Li

2, U ¼ α=r1 þ α=r2, andUi ¼ Li
1=r

3
1þ

Li
2=r

3
2. Equation (18) is only a formal expression for δEA,

and it needs to be expanded in the magnetic field. For this
we rewrite δEA in the form
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EA ¼ −
2α

3π

�
ðr⃗1 þ r⃗2ÞðH − EÞ3 ln 2ðH − EÞ

mα2
ðr⃗1 þ r⃗2Þ

�
B
;

ð20Þ

and divide δEA into two parts coming from different
perturbations to H0 in Eq. (19). The part due to 1=ð3mÞμ⃗ ·
B⃗U leads to the first correction

σA1¼−
2α

9π
δU

�
ðr⃗1þ r⃗2ÞðH0−E0Þ3 ln

2ðH0−E0Þ
mα2

×ðr⃗1þ r⃗2Þ
�

¼ 2α

9πm2
DA1 lnkA1; ð21Þ

DA1 ≡ −4πZ
�
U

1

ðE0 −H0Þ0
ðδðr1!Þ þ δðr2!ÞÞ

�

þ 2παhδðr1!Þ þ δðr2!Þi: ð22Þ

The second correction is due to perturbation from the
two other terms in Eq. (19),

σA2 ¼ −
α2

9πm2
δLi;Ui

�
ðr⃗1 þ r⃗2ÞðH0 − E0Þ3 ln

2ðH0 − E0Þ
mα2

× ðr⃗1 þ r⃗2Þ
�

¼ −
α2

9πm2
ð1þ 3 ln kA2ÞDA2; ð23Þ

DA2 ≡ 8πhδðr1!Þ þ δðr2!Þi: ð24Þ

Both σA1 and σA2 are expressed with the Bethe-type
logarithms ln kA1 and ln kA2, respectively. Their numerical

calculation is not straightforward because it involves the
logarithm of the Hamiltonian (see, e.g., Ref. [37]). Like the
standard Bethe logarithm ln k0, all these elements have
the striking property that they are only slightly dependent
on the number of electrons, as can be seen from the
numerical results in Table I.
Hydrogenic formula.—The expression σð5Þ for a one-

electron atomic system is obtained by direct reduction of
one of the electrons in Eq. (13) and related expressions. As
a result, the total magnetic shielding for hydrogenlike ions,
including contributions up to order α5, has a compact
structure, namely,

σ ¼ 1

3
αðZαÞ þ 97

108
αðZαÞ3 þ 8

9π
α2ðZαÞ3

�
ln ½ðZαÞ−2�

þ 2 ln k0ðHÞ − 3 ln k3 −
221

64
þ 3

5

	

þ Zα2

3

�
1 − gN
gN

− 1

�
m
mN

þ Zα2

3

�
1þ Z

2þ 3gN
2gN

− 2
1 − gN
gN

�
m2

m2
N
; ð25Þ

where the nuclear g factor is defined as

gN ¼ mN

Zmp

μ

μN

1

I
: ð26Þ

In Eq. (26), mp is the proton mass, μN is the nuclear
magneton, and μ and I are the magnetic moment and the
spin of the considered nucleus, respectively. Moreover, the
terms ln kA1 and ln kA2 introduced in Eqs. (21) and (23)
can be represented for hydrogenic systems in terms of
ln k0ðHÞ and ln k3 [38] (as shown in Table I).
Comparing Eq. (25) to the result published in

Refs. [29,30] it differs in the constant term −421=96
instead of −221=64, due to omitted contributions coming
from magnetic moment anomaly. We observe that the new
analytic result for hydrogenic systems is in much better
agreement with the numerical values from Refs. [29,30]
which were calculated to all orders in Zα but exhibited
large numerical uncertainties for Z < 10.
Numerical calculations and results.—To evaluate the

magnetic shielding constant for 3He including the QED
correction σð5Þ we represent the wave function and other
auxiliary functions used in the calculation of the second-
order terms in the basis set of explicitly correlated expo-
nential functions. For example, the ground-state wave
function is given by

ψðr⃗1; r⃗2Þ ¼ ð1þ P12Þ
XN
i¼1

cie−αir1−βir2−γir12 ; ð27Þ

where P12 exchanges r⃗1 with r⃗2, and all nonlinear
parameters αi, βi, and γi were determined variationally.
In order to control the numerical uncertainty, we performed

TABLE I. Numerical values of He matrix elements. The results
are in atomic units and using the notation σðnÞ ¼ αnσ̃ðnÞ.

Operator Value

E0 −2.903 724 377 034 119 59ð1Þ
hUi 3.376 633 601 434 081(4)
DA1 98.798 613 9(3)
DA2 91.002 103 1(3)
ln k0 4.370 160 22(2)
ln k0ðHÞ þ 2 ln Z 4.370 422 917
ln kA1 4.829 409(3)
ln k0ðHÞ þ 2 ln Z þ 1=2 4.870 422 917
ln kA2 4.638 660(15)
ln k3 þ 2 ln Z 4.659 100 906
σ̃A1 33.750 67(2)
σ̃A2 −48.007 69ð14Þ
σ̃B0 70.054 125 1(2)
σ̃B1 −55.342 119 09ð14Þ
σ̃B2 4.188 033 454(7)
σ̃B3 0.011 67(3)
σ̃ð5Þ 4.654 69(15)
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the calculations with several basis sets successively increas-
ing their size by a factor of 2; e.g., for the ground-state wave
function we used N ¼ 128, 256, and 512 basis functions.
The result obtained in the largest basis set is accurate to
17 significant digits compared to the benchmark result
obtained by Korobov et al. [39]. The method of full
optimization used in this work has some advantages in
numerical calculations. First of all, the numerical uncer-
tainties with these compact wave functions are negligible in
comparison to uncertainties due to the omitted higher-order
corrections. Moreover, the calculations of all the second-
order matrix elements have been performed in quadrupole
precision arithmetics, with the full optimization of the
intermediate basis of the comparable same size as the
ground-state wave function. Similarly, the optimization of
the intermediate basis in the calculation of Bethe-type
logarithms using integral representations was essential in
obtaining high accuracy of numerical results.
From the analysis of convergence, we obtained the

extrapolated mean values of the operators. The different
contributions to the QED correction of the magnetic
shielding in 3He are given in Table I, while the numerical
calculation of the lower-order contributions in α is pre-
sented in detail in Ref. [25]. The numerical value for the
shielding Bethe logarithms ln kA1 and ln kA2 were verified
in Table I by the hydrogenic counterparts, because we
expect a minor dependence on the number of electrons
similarly to standard Bethe logarithms.
The final results for the shielding in 3He are summarized

in Table II. We note that the QED correction is subject to
cancellations of the different contributions, and the value
presented here for σð5Þ ¼ 96.3 × 10−12 is significantly lower
than the one previously reported in Ref. [25], σð5Þprev ¼
502 × 10−12, in which only the leading logarithmic con-
tributionwas included. This difference is also reflected in the
final value of the shielding. The convergence of the
expansions in the fine structure constant α and the elec-
tron-nuclear mass ratio m=mN is very rapid, which justifies
our approach based on the NRQED theory. The numerical
uncertainties are completely negligible, and only the
unknown higher-order terms in α and m=mN contribute to
the uncertainty. The finite nuclear size effects ENS are
significant only for heavy elements; here we expect them
to be as important as for the binding energy, which for the
ground state of He amounts to [40] ENS=E0 ≈ 5 × 10−9,
which is negligible with respect to the current relative
uncertainty of σ.
Our result for the magnetic shielding in 3He is in

disagreement with almost all previous calculations in
Refs. [42–45], which use the standard quantum chemistry
codes and do not present any uncertainties. Moreover, none
of them include the finite nuclear mass or the QED effects,
but the differences are significantly greater than the omitted
corrections. The only exception is the results of Vaara and
Pyykkö [41], which, although the oldest one, present
uncertainties in agreement with our result.

Conclusions.—We have presented the complete formula
of the leading quantum electrodynamics correction to the
magnetic shielding for hydrogen- and heliumlike atomic
systems, and performed calculations for 1H and the par-
ticularly important cases of 3Heþ and 3He, which are
accurate to 3 × 10−12, 9 × 10−12, and 23 × 10−12, respec-
tively. The results permit establishing a new standard for
the absolute magnetometry based on 3He NMR probes, by
removing one of the bottlenecks in determining μh by
indirect methods.
Moreover, the NMR frequency ratio of 3He and of H2 is

known with a relative accuracy of about 10−9 [12] and μp to
2.9 × 10−10, so it is enough to provide the magnetic
shielding of H2 with about 10−5 relative accuracy, to obtain
μh with about 10−9 accuracy for verifying the consistency
among various determinations. This would require the
calculation of only nonadiabatic and relativistic effects,
which we plan to perform in the near future, while the QED
corrections, estimated using the atomic value in Table II,
are negligible.
The result of the magnetic shielding in 3Heþ can be used

for the determination of μh from the measurement of 3Heþ
[14,16], being close to completion [17]. Alternatively, if μh
is measured directly by comparison with the cyclotron
frequency [14], the result for the 3He magnetic shielding
will provide an accurate magnetic moment of atomic 3He
for use in absolute magnetometry. Finally, the NRQED

TABLE II. Contributions to the shielding constant σ × 106 for
1H, 3Heþ, and 3He. Quantities that are preceded by “�” represent
the uncertainties. Numerical values σð2Þ and σð4Þ for 3He are taken
from Ref. [25]. σð2;2ÞðHeÞ is estimated to be between σð2;2ÞðHeþÞ
and 2σð2;2ÞðHeþÞ. The relative uncertainty of the finite nuclear
mass correction σð4;1Þ is estimated as 2m=mN of σð4Þ. σð6Þ is
partially known from the Dirac equation [24], but we expect
cancellation with the radiative correction, so we estimate the
uncertainty originating from this contribution as ðZαÞ2σð4Þ.

1H 3Heþ 3He

σð2Þ 17.750 451 5 35.500 903 0 59.936 770 5

σð4Þ 0.002 546 9 0.020 375 1 0.052 663 1

σð5Þ 0.000 018 4 0.000 082 0 0.000 096 3

σð2;1Þ −0.017 603 7 −0.013 933 4 −0.022 511 5
σð2;2Þ 0.000 022 7 0.000 007 1 0.000 010 7(36)

σð4;1Þ �0.000 002 8 �0.000 007 4 �0.000 019 2

σð6Þ �0.000 000 1 �0.000 004 3 �0.000 011 2

σ × 106 17.735 436(3) 35.507 434(9) 59.967 029(23)

Vaara and Pyykkö [41] 59.93(4)
Kudo and Fukui [42] 59.8
Antušek et al. [43] 59.908 03
Rudziński et al. [25] 59.967 43(10)
Seino and Hada [44] 59.95
Kupka et al. [45] 59.930
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approach, presented in this work, to calculate the magnetic
shielding, can be extended to nuclei of other light atomic
systems, such as Li, Be, and B, which will lead to the
determination of their magnetic moments with the accuracy
of experiments, which for the case of Beþ [46] is about
10−9, i.e., higher by a few orders of magnitude in
comparison to the presently known value of μBe [47,48].

D. W. thanks F. Merkt for his unconditional support to
work on this project. This research was supported by
National Science Center (Poland) Grants No. 2017/27/B/
ST2/02459 and 2019/35/N/ST4/04445, as well as by a
computing grant from the Poznań Supercomputing and
Networking Center and by PL-Grid Infrastructure.

[1] T. R. Gentile, P. J. Nacher, B. Saam, and T. G. Walker, Rev.
Mod. Phys. 89, 045004 (2017).

[2] B. Abi and et al. (Muon g − 2 Collaboration), Phys. Rev.
Lett. 126, 141801 (2021).

[3] N. Sachdeva et al., Phys. Rev. Lett. 123, 143003 (2019).
[4] G. Gabrielse, S. E. Fayer, T. G. Myers, and X. Fan, Atoms 7,

45 (2019).
[5] X. Fan, S. E. Fayer, and G. Gabrielse, Rev. Sci. Instrum. 90,

083107 (2019).
[6] A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A.

Maul, E. Otten, L. M. Schreiber, and M. Terekhov, Eur.
Phys. J. D 68, 330 (2014).

[7] M. Farooq, T. Chupp, J. Grange, A. Tewsley-Booth, D. Flay,
D. Kawall, N. Sachdeva, and P. Winter, Phys. Rev. Lett. 124,
223001 (2020).

[8] Y. I. Neronov and N. N. Seregin, Metrologia 51, 54 (2014).
[9] J. L. Flowers, B. W. Petley, and M. G. Richards, Metrologia

30, 75 (1993).
[10] N. N. Aruev and Y. Neronov, Tech. Phys. 57, 1579 (2012).
[11] K. Jackowski, M. Jaszuński, and M. Wilczek, J. Phys.

Chem. A 114, 2471 (2010).
[12] P. Garbacz, K. Jackowski, W. Makulski, and R. E.

Wasylishen, J. Phys. Chem. A 116, 11896 (2012).
[13] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev.

Mod. Phys. 93, 025010 (2021).
[14] A. Schneider, A. Mooser, A. Rischka, K. Blaum, S. Ulmer,

and J. Walz, Ann. Phys. (Amsterdam) 531, 1800485 (2019).
[15] V. Y. Shifrin, P. G. Park, C. G. Kim, V. N. Khorev, and C. H.

Choi, IEEE Trans. Instrum. Meas. 46, 97 (1997).
[16] A. Mooser, A. Rischka, A. Schneider, K. Blaum, S. Ulmer,

and J. Walz, J. Phys. 1138, 012004 (2018).
[17] A. Mooser (private communication).
[18] A. Mooser, S. Ulmer, K. Blaum, K. Franke, H. Kracke, C.

Leiterlitz, W. Quint, C. C. Rodegheri, C. Smorra, and J.
Walz, Nature (London) 509, 596 (2014).

[19] G. Schneider, A. Mooser, M. Bohman, N. Schön, J.
Harrington, T. Higuchi, H. Nagahama, S. Sellner, C.
Smorra, K. Blaum, Y. Matsuda, W. Quint, J. Walz, and
S. Ulmer, Science 358, 1081 (2017).

[20] C. Smorra, S. Sellner, M. J. Borchert, J. A. Harrington, T.
Higuchi, H. Nagahama, T. Tanaka, A. Mooser, G.
Schneider, M. Bohman, K. Blaum, Y. M. C. Ospelkaus,
W. Quint, J. Walz, Y. Yamazaki, and S. Ulmer, Nature
(London) 550, 371 (2017).

[21] W. E. Lamb, Phys. Rev. 60, 817 (1941).
[22] N. F. Ramsey, Phys. Rev. 78, 699 (1950).
[23] W. E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437

(1986).
[24] V. G. Ivanov, S. G. Karshenboim, and R. N. Lee, Phys. Rev.

A 79, 012512 (2009).
[25] A. Rudziński, M. Puchalski, and K. Pachucki, J. Chem.

Phys. 130, 244102 (2009).
[26] K. Pachucki, Phys. Rev. A 78, 012504 (2008).
[27] C. A. Gimenez, K. Kozioł, and G. A. Aucar, Phys. Rev. A

93, 032504 (2016).
[28] W. Kutzelnigg, Chem. Phys. 395, 16 (2012), recent

Advances and Applications of Relativistic Quantum
Chemistry.

[29] V. A. Yerokhin, K. Pachucki, Z. Harman, and C. H. Keitel,
Phys. Rev. Lett. 107, 043004 (2011).

[30] V. A. Yerokhin, K. Pachucki, Z. Harman, and C. H. Keitel,
Phys. Rev. A 85, 022512 (2012).

[31] K. Pachucki, Phys. Rev. A 69, 052502 (2004).
[32] C. Itzykson and J.-B. Zuber, Quantum Field Theory (Dover

Publications, New York, 2005).
[33] U. D. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev.

A 72, 062102 (2005).
[34] H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One-

and Two-Electron Atoms (Plenum Publishing Corporation,
New York, 1977).

[35] T. Helgaker, M. Jaszuński, and K. Ruud, Chem. Rev. 99,
293 (1999).

[36] K. Pachucki, J. Phys. B 31, 5123 (1998).
[37] M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 87,

030502(R) (2013).
[38] K. Pachucki, A. Czarnecki, U. D. Jentschura, and V. A.

Yerokhin, Phys. Rev. A 72, 022108 (2005).
[39] D. T. Aznabaev, A. K. Bekbaev, and V. I. Korobov, Phys.

Rev. A 98, 012510 (2018).
[40] K. Pachucki, V. Patkóš, and V. A. Yerokhin, Phys. Rev. A

95, 062510 (2017).
[41] J. Vaara and P. Pyykkö, J. Chem. Phys. 118, 2973

(2003).
[42] K. Kudo and H. Fukui, J. Chem. Phys. 123, 114102

(2005).
[43] A. Antušek, M. Jaszuński, and A. Rizzo, J. Chem. Phys.

126, 074303 (2007).
[44] J. Seino and M. Hada, J. Chem. Phys. 132, 174105 (2010).
[45] T. Kupka, M. Stachów, L. Stobiński, and J. Kaminský,

Magn. Reson. Chem. 51, 463 (2013).
[46] D. J. Wineland, W. M. Itano, and R. S. van Dyck Jr., Adv.

At. Mol. Phys. 19, 135 (1983).
[47] A. Antušek, P. Rodziewicz, D. Kędziera, A. Kaczmarek-

Kędziera, and M. Jaszuński, Chem. Phys. Lett. 588, 57
(2013).

[48] K.PachuckiandM.Puchalski,Opt.Commun.283, 641(2010).

PHYSICAL REVIEW LETTERS 127, 263001 (2021)

263001-6

https://doi.org/10.1103/RevModPhys.89.045004
https://doi.org/10.1103/RevModPhys.89.045004
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.123.143003
https://doi.org/10.3390/atoms7020045
https://doi.org/10.3390/atoms7020045
https://doi.org/10.1063/1.5099379
https://doi.org/10.1063/1.5099379
https://doi.org/10.1140/epjd/e2014-50401-3
https://doi.org/10.1140/epjd/e2014-50401-3
https://doi.org/10.1103/PhysRevLett.124.223001
https://doi.org/10.1103/PhysRevLett.124.223001
https://doi.org/10.1088/0026-1394/51/1/54
https://doi.org/10.1088/0026-1394/30/2/004
https://doi.org/10.1088/0026-1394/30/2/004
https://doi.org/10.1134/S1063784212110035
https://doi.org/10.1021/jp9096056
https://doi.org/10.1021/jp9096056
https://doi.org/10.1021/jp309820v
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1002/andp.201800485
https://doi.org/10.1109/19.571782
https://doi.org/10.1088/1742-6596/1138/1/012004
https://doi.org/10.1038/nature13388
https://doi.org/10.1126/science.aan0207
https://doi.org/10.1038/nature24048
https://doi.org/10.1038/nature24048
https://doi.org/10.1103/PhysRev.60.817
https://doi.org/10.1103/PhysRev.78.699
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevA.79.012512
https://doi.org/10.1103/PhysRevA.79.012512
https://doi.org/10.1063/1.3159674
https://doi.org/10.1063/1.3159674
https://doi.org/10.1103/PhysRevA.78.012504
https://doi.org/10.1103/PhysRevA.93.032504
https://doi.org/10.1103/PhysRevA.93.032504
https://doi.org/10.1016/j.chemphys.2011.06.001
https://doi.org/10.1103/PhysRevLett.107.043004
https://doi.org/10.1103/PhysRevA.85.022512
https://doi.org/10.1103/PhysRevA.69.052502
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1021/cr960017t
https://doi.org/10.1021/cr960017t
https://doi.org/10.1088/0953-4075/31/23/010
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.72.022108
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1063/1.1545718
https://doi.org/10.1063/1.1545718
https://doi.org/10.1063/1.2032408
https://doi.org/10.1063/1.2032408
https://doi.org/10.1063/1.2446955
https://doi.org/10.1063/1.2446955
https://doi.org/10.1063/1.3413529
https://doi.org/10.1002/mrc.3972
https://doi.org/10.1016/S0065-2199(08)60253-5
https://doi.org/10.1016/S0065-2199(08)60253-5
https://doi.org/10.1016/j.cplett.2013.10.018
https://doi.org/10.1016/j.cplett.2013.10.018
https://doi.org/10.1016/j.optcom.2009.10.058

