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Emerging dynamical constraints resulting from intersite interactions severely limit particle mobility in
polar lattice gases. Whereas in absence of disorder hard-core Hubbard models with only strong nearest-
neighbor interactions present Hilbert space fragmentation but no many-body localization for typical states,
the 1=r3 tail of the dipolar interaction results in Hilbert space shattering, as well as in a dramatically slowed
down dynamics and eventual disorder-free localization. Our results show that the study of the intriguing
interplay between disorder- and interaction-induced many-body localization is within reach of future
experiments with magnetic atoms and polar molecules.
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Recent years have witnessed considerable attention on the
dynamics of many-body quantum systems, a rich topic both
fundamentally and practically relevant [1,2]. Most quantum
many-body systems are believed to thermalize as a conse-
quence of the eigenstate thermalization hypothesis [3–6].
Prominent exceptions to this paradigm include integrable
systems [7] and many-body localization (MBL) in disor-
dered systems [8–10]. Progress on MBL has been recently
followed by interest on MBL-like phenomenology in
absence of disorder [11–28]. Disorder-free localization
occurs naturally due to dynamical constraints [29–31].
These constraints, which result in a finite number of
conservation laws, induce Hilbert space fragmentation into
disconnected subspaces that severely limits the dynamics
[32–38]. Hilbert space fragmentation is also closely con-
nected to quantum scars [39].
Ultracold gases in optical lattices or reconfigurable

arrays provide a well-controlled scenario for the study
of many-body dynamics, including MBL [40,41], and
quantum scars [42]. Recent experiments on tilted Fermi-
Hubbard chains [25] and in a trapped-ion quantum simu-
lator [27] have provided evidence of nonergodic behavior
in absence of disorder, unveiling the potential of ultracold
gases for the study of disorder-free MBL and Hilbert space
fragmentation. It is hence particularly relevant to find other
promising ultracold scenarios for the study of fragmenta-
tion due to interaction-induced constraints. As shown
below, polar lattice gases are a natural candidate.
Power-law interacting systems have been the focus of

recent breakthrough experiments, including trapped ions
[43,44], Rydberg gases [42,45], and lattice gases of
magnetic atoms or polar molecules, with strong magnetic
or electric dipole-dipole interactions. Experiments on polar
lattice gases have already revealed intersite spin exchange
in both atoms [46] and molecules [47], and realized
an extended Hubbard model with nearest-neighbor (NN)
interactions [48]. These experiments have started to unveil

the fascinating possibilities that intersite dipolar inter-
actions offer for the quantum simulation of a large variety
of models [49]. MBL in disordered spin models with
power-law Ising and exchange interactions has attracted
growing attention [50–57]. Very recently, disorder-free
Stark-MBL has been revealed in trapped ions with long-
range spin exchange [27]. Intersite interactions result as
well in an intriguing dynamics in extended Hubbard
models [58–65]. In particular, NN dimers significantly
slow down the dynamics in one-dimensional (1D) polar
lattice gases, and may induce quasilocalization [15,61].
In the absence of any tilting or overall potential, a

disorder-free system with only NN interactions (NN model)
presents Hilbert space fragmentation due to the conservation
of the number of NN bonds, but resonant motion within a
fragment remains in general possible, precluding disorder-
free localization [32]. In this Letter we show that the 1=r3 tail
of strong-enough dipolar interactions induces additional
constraints that lead to the shattering [36] of the Hilbert-
space fragments of the NN model, and disrupt resonant
motion within a Hilbert space fragment. The latter results in
a very strong slow-down of the dynamics compared to the
NN model, and eventually to disorder-free localization. Our
results show that the study of disorder-free localization is
within reach of future experiments on polar lattice gases.
Model.—We consider a 1D polar lattice gas of hard-core

bosons [66] well described by the extended Hubbard
model:

H ¼ −t
X

j

ðb†jbjþ1 þ H:c:Þ þ
X

j

ϵjnj þ
X

i<j

Vijninj; ð1Þ

where Vij ¼ ½V=ðji − jj3Þ�, bjðb†jÞ is the annihilation (cre-

ation) operator at site j, ðb†jÞ2 ¼ 0, nj ¼ b†jbj the number
operator, and t the hopping amplitude. The random on-site
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energy ϵj is uniformly distributed in the interval ½−W;W�.
Our results are based on exact diagonalization of Eq. (1).
Nearest-neighbor model.—For the NN model, with

Vij ¼ Vδj;iþ1 [32,67], a dynamical constraint emerges
for growing V=t, becoming exact for V ¼ ∞, given by
the conservation of NN bonds, NNN ¼ P

jhnjnjþ1i. As a
result, the Hilbert-space fragments into disconnected
blocks of Fock states [32]. However, crucially, the dynam-
ics within each one of the blocks remains in general
resonant, even for V ¼ ∞. For blocks with a finite density
of singlons (i.e., particles without nearest neighbors),
clusters of consecutively occupied sites of any length
delocalize by swapping their positions with incoming
singlons, through a series of resonant moves:
j…∘∘ • •… • •∘ • ∘…i → � � � → j…∘ • ∘ • •… • •∘…i. As a
result disorder-free localization is generally precluded [32],
and delocalization occurs in a time ∼1=t.
Hilbert space fragmentation.—In order to study Hilbert-

space fragmentation [68], we obtain for W ¼ 0 the eigen-
states jαi ¼ P

f ψαðfÞjfi, where jfi ¼ Q
L
l¼1 jnlðfÞi are

the Fock states with population nlðfÞ ¼ 0, 1 in site l, and
N ¼ P

L
l¼1 nl. Given an eigenstate jαi, we find the Fock

states contributing to it (up to a threshold jψαðfÞj > t2=V).
We then determine the eigenstates with significant support
on those Fock states, and iterate by proceeding similarly
with each of those eigenstates. Convergence is achieved
after few iterations. For large-enough V=t, this procedure
provides at W ¼ 0 the block of Fock states that connect
with an initial jfi if allowed an infinitely long time. Hilbert-
space fragmentation is evident in Fig. 1(a) (connected Fock
states and eigenstates are bunched in consecutive positions
for clarity), where we consider a clean (W ¼ 0) NN model
with N ¼ 6, L ¼ 12, V=t ¼ 50, and open boundary con-
ditions. Dashed lines indicate states with the same NNN.
States with 2 ≤ NNN ≤ 4 show sub-blocks, formed by
states with different cluster distribution, disconnected under
unitary dynamics.
Once fragmentation is determined in the clean NN

model, further fragmentation either due to disorder or
due to the 1=r3 dipolar tail may be analyzed by means
of the inverse participation ratio IPRf ¼ P

α jψαðfÞj4 of a

given Fock state jfi. Starting an evolution with that
state, IPRf provides the long-time survival probability
of the many-body state jψðτÞi in the initial state,
jhfjψðτ → ∞Þij2. Strong localization is hence character-
ized by IPRf ∼ 1. In the presence of disorder, W > 0,
localization results in the fragmentation of the NN blocks,
which may be studied for V=t > 10 by comparing IPRf

with the size Λf of the Hilbert space block to which the
particular Fock state belongs for the clean NN model. For
4 < V=t < 10, blocks with fixed NNN develop in the clean
NN model, but the sub-block structure is not yet fully
formed, and we hence set Λf as the dimension of the block
of states with fixed NNN. For V=t < 4, no fragmentation
occurs in the clean NN model and we hence fix Λf as the
dimension of the whole Hilbert space. Delocalized states
(within the corresponding block of the clean NNmodel) are
characterized by IPRf ∼OðΛ−1

f Þ. We determine the fractal
dimension, Df ¼ − lnðIPRfÞ= lnðΛfÞ [69,70]. Df ≃ 0

[Df ∼Oð1Þ] implies localization (delocalization) [71].
Localization as a function of disorder varies from block

to block (and even within the same block [32]). For a given
V=t we determine the average D̄f for each block, finding
the block with the largest D̄max

f . For low filling factors,
D̄max

f corresponds, quite naturally, to the block with
NNN ¼ 0. Note that when D̄max

f ∼ 0 the whole spectrum
localizes. Figure 2(a) shows D̄max

f for a half-filled NN
model [72]. For growing V=t, the region of delocalized
states grows up to a maximum and then decreases due to the
reduced cluster mobility, resulting in a reentrant shape, in
agreement with Ref. [67]. However, disorder-induced
fragmentation of the NN blocks does require a finite
disorder strength even at V ¼ ∞, due to the above-
mentioned in-block resonant motion [73].

FIG. 1. Amplitude jψαðfÞj of the eigenstates jαi in the Fock
basis fjfig for the NN model (a) and the polar gas (b) for N ¼ 6,
L ¼ 12, W ¼ 0, and V=t ¼ 50.

FIG. 2. D̄max
f as a function of V=t and W=t for N ¼ 8 and

L ¼ 16 for the NN model (a) and the polar lattice gas (b). Blue
regions are regimes of strong fragmentation of the blocks of the
clean NN model. Results obtained from exact diagonalization
averaging over 1000 different disorder realizations. The apparent
abrupt change at V=t ≃ 10 is due to the reduction of the size Λf of
the block of maximal D̄f.
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Polar lattice gas.—Whereas in the NN model a growing
V=t just reenforces the conservation of NNN, in polar
gases it leads to additional constraints, starting with the
conservation of the number of next-to-NN bonds,
NNNN ¼ P

jhnjnjþ2i. For V → ∞ it seems intuitive that
the conservation of the number of bonds at any distance
leads to frozen dynamics even for W ¼ 0 for any initial
condition (there are, however, exceptions, as mentioned
below). More interesting, however, is that dipolar inter-
actions induce disorder-free quasilocalization (see the
discussion below) for values of V=t well within exper-
imental reach.
In polar lattice gases, the severe dynamical constraint

induced by additional emerging conserved quantities
results, for sufficiently large V=t, in the shattering of the
block structure of the NN model. As shown in Fig. 1(b) for
a clean half-filled case with V=t ¼ 50, the Hilbert space
breaks down into a much finer structure compared to that of
the clean NN model [Fig. 1(a)]. Note that for V=t ¼ 50,
interactions beyond next-to-NN are smaller than the band-
width, 4t, and hence, for half-filling the shattering of the
NN blocks results from the mere additional emerging
conservation of NNNN.
As for the case of the disordered NN model, we may

quantify the shattering of the NN blocks by means of the
evaluation of the fractal dimension Df for the different
Fock states, obtained again by comparing IPRf with the
size of the block evaluated for the clean NN model. In
Fig. 3 we depict for a clean polar lattice gas, for different
system sizes, the average ¯̄Df evaluated over the whole Fock
basis, which provides a good quantitative estimation of the
overall shattering of the NN blocks. The results show that
clean polar lattice gases with V=t ≳ 20 are characterized
by a strong shattering of the blocks of the clean NN
model [72]. The graph of D̄max

f [Fig. 2(b)] is hence
markedly different for V=t > 20 compared to the NN
model, with Hilbert-space shattering (and, as discussed

below, localization) penetrating all the way to vanishingly
small disorder.
Dynamics.—Whereas NN models are characterized by

resonant motion within a Hilbert-space fragment, the
emerging conservation of NNNN in a polar gas largely
prevents resonant dynamics. When the Hilbert space
shatters, an initial Fock state can only connect resonantly
to a limited number of Fock states in the same block,
whereas the rest of the block can only be reached via virtual
excursions into other Hilbert-space blocks in high order in
t=V ≪ 1. As a result, compared to the NN model, particle
dynamics in the polar gas is typically dramatically slowed
down for sufficiently large V=t.
The latter is well illustrated by the evolution of the

initial state jψðτ ¼ 0Þi ¼ j∘∘ • ∘ • ∘ • • • ∘ • ∘ • ∘ • ∘i (other
initial states provide in general similar results). We employ
exact time evolution of Eq. (1) and periodic boundary
conditions to remove boundary effects. This initial half-
filled state delocalizes in the NN model due to resonant
hops, which break the central trimer into two dimers:
j∘∘ • ∘ • ∘ • •∘ • •∘ • ∘ • ∘i and then delocalize each dimer,
e.g., j∘∘ • ∘ • •∘ • ∘ • •∘ • ∘ • ∘i. All these processes remain
resonant in the NN model even for V ¼ ∞. In contrast, a
sufficiently large dipolar interaction renders the breaking of
the initial trimer nonresonant, since it does not preserve
NNNN. Moreover, the formation of beyond-NN clusters
further hinders the particle dynamics.
Analogous to MBL experiments based on the evolution

of density waves [25,40], and similar to recent trap ion
experiments [27], we define the homogeneity parameter as
ηðτÞ ¼ f½N0ðτÞ=L0 − N=L�=ð1 − N=LÞg, where N0ðτÞ ¼P

j∈f0hnjðτÞi is the number of particles in the set f0 of L0

initially occupied sites. Homogenization of the on-site
populations results in ηðτÞ → 0. We depict in Fig. 4(a)
ηðτÞ for V=t ¼ 50. Homogenization is quickly reached for
the NN model at τ ∼ 1=t (tiny residual values are due to
finite size), whereas for a polar gas, η plateaus at a large
value, indicating a long-lived memory of initial conditions.
We have checked that for this example the plateau is
already evident for V=t > 20.
A longer-time evolution reveals eventual delocalization

due to a very weak coupling between Fock states belonging
to the same small block of the shattered Hilbert space. This
coupling results from the above-mentioned higher-order
virtual excursions to other blocks. For large-enough V=t,
many such virtual excursions are necessary, and hence the
coupling between Fock states becomes exponentially small
in t=V. This quasilocalization within the block B (of size
Ωf) of the shattered Hilbert space to which jψðτ ¼ 0Þi
belongs is well visualized by monitoring jψðτ > 0Þi ¼P

f∈B ψfðτÞjfi [74], and determining the participation
ratio PRðτÞ¼ðPf∈B jψfðτÞj4Þ−1. In the inset of Fig. 4(b)
we depict κðτÞ ¼ PRðτÞ=PRð∞Þ showing that the long-
lived memory of initial conditions observed in ηðτÞ
results from the fact that only a limited fraction of the

FIG. 3. Averaged fractal dimension ¯̄Df (see text) as a function
of V=J for a half-filled clean polar lattice gas of different system
sizes. For V=t > 20, ¯̄Df decreases with growing L indicating a
more pronounced shattering.
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Hilbert-space block is effectively reached during the
plateau time.
The two-stage dynamics is evident in the evolution of the

entanglement entropy, SvN , calculated from a partition of
the system to one half [Fig. 4(c)]. In contrast to standard
MBL, the lack of local integrals of motion results in the
absence of logarithmic growth of SvN , which plateaus
during the localization, and only grows due to the eventual
delocalization at finite V=t. The time of the onset of the
second stage scales exponentially with V=t, being observ-
able for N ¼ 8 and L ¼ 16 for V=t ≃ 30 but prohibitively
long for typical experiments for V=t > 50. Moreover, our
analysis of different system sizes [Fig. 4(a)] shows that
the delocalization time also scales exponentially with the
system size, since even more intricate virtual excursions are
needed to connect different Fock states in the block. Note
also that the high-order excursions responsible for the
eventual delocalization are canceled even by vanishingly
small disorders, as shown in Fig. 4(b), whereas the same
tiny disorder has a negligible effect for the NN model [72].
Finally, note that as for other systems with kinetic

constraints, particle dynamics strongly depends on the
particular initial condition. Although the lack of a general
resonant motion mechanism will slow down and quasiloc-
alize typical states, some particular states may remain
delocalized even for very large V=t. This is the case
of a density wave with a single domain wall, e.g.,
j… • ∘ • ∘ • ∘ • ∘∘ • ∘ • ∘ • ∘ • …i. With periodic boundary
conditions, the wall moves resonantly while preserving the
interaction energy to all neighbors, delocalizing for any
arbitrary V. Note, however, that for open boundary con-
ditions the boundaries induce, due to the dipolar tail, an
effective confinement for the domain wall, preventing it
from reaching a distance ðV=tÞ1=3 from the lattice edges
[72]. This is yet another localization mechanism induced by
the dipolar tail that may be relevant in experiments.

Conclusions.—Emerging dynamical constraints induced
by the dipolar 1=r3 tail lead toHilbert-space shattering,which
at half-filling occurs for V=t≳ 20. Moreover, these con-
straints disrupt the resonant transport characteristic of NN
models, resulting in a dramatic slow-down of the particle
dynamics and eventual disorder-free localization. Although
we have focused on the dynamics once shattering develops, a
significant slow-down also occurswithin the not yet shattered
NN blocks even for smaller V=t ratios. This interesting
dynamics will be the focus of a forthcoming work.
For magnetic atoms, recent experiments have achieved

V=t ≃ 3 [48], but the use of Feshbach molecules of
lanthanide atoms [75] and/or subwavelength [76,77] or
UV lattices may significantly boost the V=t ratio. For
example, for 164Dy in an UV lattice with 180 nm spacing
and depth of 23 recoil energies, jVj=t ≃ 30, with
t=ℏ ≃ 93 s−1. Disorder-free localization could then be
probed in a few seconds, well within experimental life-
times. Polar molecules offer exciting possibilities for large
V=t even without the need of a special lattice, due to their
much stronger dipolar interaction, orders of magnitude
larger than that of magnetic atoms [78]. Our work hence
shows that the study of the interplay between disorder-
and interaction-induced localization is well within reach
of future experiments on polar lattice gases. Moreover,
our results have a more general applicability, being poten-
tially relevant for other disorder-free systems with more
general long-range interactions, in particular trapped ions
[27], where intriguing localization properties may result
from the interplay between power-law exchange and
Ising terms.
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FIG. 4. (a) Time evolution of the homogeneity ηðτÞ for V=t ¼ 50 and periodic boundary conditions, for the NN model (with N ¼ 8
and L ¼ 16) and a polar gas (with different system sizes) The initial half-filled state is discussed in the text. In order to compare different
system sizes we add or remove pairs •∘; at the right of the state. (b) Same as (a) for N ¼ 8 and L ¼ 16, comparing the clean case with
that with a very small disorderW=t ¼ 2 × 10−4 (averaged over 1000 realizations). Solid green (dot-dashed grey) curves show the results
with W ¼ 0 for the polar gas (NN model), and dashed green (dotted grey) those for the disordered polar gase (NN model). In the inset,
we depict κðτÞ (see text) for the NN model (dotted-dashed grey) and the polar gas (solid green), with N ¼ 8 and L ¼ 16.
(c) Entanglement entropy SvN evaluated for a partition of half of the polar lattice system, for N ¼ 8 and L ¼ 16 and different ratios V=t.
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