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We propose a new scalable architecture for trapped ion quantum computing that combines optical
tweezers delivering qubit state-dependent local potentials with oscillating electric fields. Since the electric
field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal
alone, it is inherently scalable to large ion crystals. Furthermore, our proposed scheme does not rely on
either ground-state cooling or the Lamb-Dicke approximation. We study the effects of imperfect cooling of
the ion crystal, as well as the role of unwanted qubit-motion entanglement, and discuss the prospects of
implementing the state-dependent tweezers in the laboratory.
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Introduction.—Trapped ions form one of the most
mature laboratory systems for quantum information
processing and quantum simulation [1–3]. Many of the
basic building blocks needed for these technologies have
been demonstrated: high fidelity detection and preparation
[4] and universal quantum operations performed by
external fields coupling to the internal states of the ions.
While quantum gates have been performed with very high
fidelities in trapped ions [5–7], scaling up the system while
maintaining the quality of operations has proven to be
challenging. In particular, as the length of ion crystals
increases, the number of motional modes to which the gate
lasers couple also increases. This leads to a reduction of
interaction strength for gates between distant qubits [8].
Furthermore, the number of degrees of freedom with which
the qubits can erroneously entangle increases.
Here we propose a novel universal trapped ion quantum

computing architecture that uses state-dependent optical
tweezer potentials [9–11] combined with oscillating elec-
tric fields to overcome the obstacles described above. Since
the electric fields only couple to the center-of-mass (c.m.)
mode of the ion crystal, adverse effects of spectator modes
that reduce the range of interaction are avoided. Moreover,
our gate does not rely on the Lamb-Dicke approximation,
which requires the wave packets of the ions to be confined
to a space smaller than the wavelength of the laser
implementing the gate. This extends the parameter regime
for gate operation. The combination of such 2-qubit gates
with single-qubit gates can be used as a universal quantum
computer.
We illustrate the gate mechanism applied to qubits i and

j in Fig. 1. We simultaneously apply an electric field of
amplitude E0 oscillating close to the c.m. frequency (at
detuning δ) and optical tweezers to the two addressed

qubits. The gate works as follows: the tweezers shift the
frequency of the c.m. mode in a state-dependent manner,
such that for two qubits in the same state the electric field can
no longer excite motion. Thus, the evolution of the system is
dominated by phonon mediated effective spin-spin inter-
actions ∝ E2

0=δ. We perform a geometric phase gate by
choosing the appropriate E0 and δ. Since the interactions are
merely mediated by the c.m. mode, they are independent of
distance. Additionally, the required tweezer power scales
linearly with the number of ions in the crystal. Both those
factors contribute to the scalability of our proposal.
Realizing a geometric phase gate.—Consider a crystal of

N ions with massesM and charge e in a harmonic trap. The
normal modes (phonon modes) and mode frequencies of
the crystal can be found by diagonalizing the Hessian
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FIG. 1. (a) Schematic representation of a linear chain of ions
where optical tweezers are applied to ions i and j. The tweezers
shift the c.m. mode depending on the internal state of the pair.
(b) Level scheme of the four states; only the states j01i and j10i
are unaffected by the extra trapping potential generated by the
tweezers. (c) Phase space dynamics of the four states when
adding an electric field at a frequency ωcom − δ. Because of the
displacement generated by the driving electric field, the states
j01i and j10i acquire a phase ϕ.
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matrix A [12]. Here AðijÞ ¼ d2V=ðdαidαjÞ, where αi are
small deviations about the equilibrium positions of the ions,
and V is the total potential energy. The eigenvectors of
the Hessian, denoted by bm, are the normal modes of the
crystal. The mode frequencies are given by ωm ¼ ffiffiffiffiffi

λm
p

,
with λm as the eigenvalues of A. For a 1D ion crystal, the
eigenmodes separate into three subclasses, corresponding
to the directions of motion x, y, z. In the following, we
focus on the axial direction (z) characterized by the trap
frequency ωz.
We address a specific ion using tweezers formed by

focused beams aligned on its equilibrium position, leaving
the geometry of the crystal independent of the qubit states.
Moreover, we will show that the laser parameters and
qubit states can be chosen such that the dynamical polar-
izability of the qubit states j0i and j1i are of equal
magnitude, but opposite sign. If the ions are confined
to the tweezer waist, the tweezer potential can be approxi-
mated by a state-dependent harmonic potential: Ĥi;j

tw ¼
1
2
Mω2

twðẑ2i σ̂iz þ ẑ2j σ̂
j
zÞ. Here, σ̂iz (σ̂jz) is the Pauli matrix

operating on ion i (j) and ẑi (ẑj) is the position operator
relative to the equilibrium position of ion i (j). The
proposed gate requires the simultaneous application of
the tweezers and an oscillating electric field generated by
applying a rf voltage to an electrode close to the ion crystal.
The total Hamiltonian is then given by

Ĥ ¼
X

m

ωm

�

â†mâm þ 1

2

�

þ Ĥi;j
tw þ ĤEðtÞ; ð1Þ

with ĤEðtÞ denoting the electric field interaction and â†m
(âm) the creation (annihilation) operator of modem. Since a
homogeneous electric field E0 only couples to the c.m.
motion,

ĤEðtÞ ¼ 2γðâ†com þ âcomÞ cosðμtÞ;

where γ ¼ eE0lcom=2, lcom ¼ ð2MωcomÞ−1=2, and μ ¼
ωcom þ δ is the frequency of the electric field. If ωtw ≪
ωm for all modes, we can use perturbation theory to find the
new mode frequencies in the presence of the tweezers:

λ̃m ≈ λm þP

k bmkÂ
ðijÞ
tw bmk þ…, with k ¼ 1;…; N. Here,

the perturbation of the tweezers to the Hessian matrix is

given by ÂðijÞ
tw ¼ ω2

twðσ̂iz þ σ̂jzÞ. To first order,

ω̃i;j
m ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
m þ ω2

twðb2miσ̂
i
z þ b2mjσ̂

j
zÞ

q

; ð2Þ

which shows that the mode frequencies shift depending on
the states of qubits i and j.
In order to gain intuition about the dynamics generated

by Eq. (1), we apply the unitary transformation Û1 ¼
exp½iðδâ†comâcom þP

m ωmâ
†
mâmÞt�, as well as the rotating

wave approximation, neglecting terms oscillating faster

than δ. Next, we apply Lang-Firsov unitary transformation
[13], Û2 ¼ exp½V̂ðâ†com − âcomÞ�, with V̂ ¼ γðĝi;jcom − δ1Þ−1.
This eliminates the first-order phonon coupling. The
resulting Hamiltonian is

Ĥ2 ¼
X

m

ĝi;jm ðâ†mâm þ 1=2Þ − δâ†comâcom

−
γ2

2δ
σ̂izσ̂

j
z þ γ2

gþcom − δ
Ŵþ þ γ2

g−com − δ
Ŵ−; ð3Þ

with Ŵþ ¼ j11iijh11jij and Ŵ− ¼ j00iijh00jij, where
we have dropped energy offset terms ∝ 1. The operator
ĝi;jm ¼ ω̃i;j

m − ωm contains the qubit-state dependence
and g�com are calculated by setting σ̂iz þ σ̂jz → �2. For the

c.m. mode, b2
com;i ¼ b2

com;j ¼ 1=N [12], thus ĝijcom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
com þ ω2

twðσ̂ðiÞz þ σ̂ðjÞz Þ=N
q

− ωcom (see Fig. 1). In the

limit ωtw ≪ ωcom, we obtain ĝijcom ≈ ω2
twðσ̂ðiÞz þ σ̂ðjÞz Þ=

ð2NωcomÞ, which shows that for a given ĝijcom the tweezer
intensity should scale linearly with N.
Effective Hamiltonian.—The first line of the Hamiltonian

(3) contains the qubit-state dependence of the phonon
modes. This may lead to residual qubit-phonon entangle-
ment at the end of the gate, causing errors. However,
straightforward spin-echo sequences correct these errors.
The second line contains the qubit-qubit interactions, and
the first term dominates for jδj ≪ jg�j. To achieve a
geometric phase gate, we set the gate time to τ ¼ 2π=δ
and γ2=δ2 ¼ π=4 [14,15].
To characterize the gate under experimental conditions,

we first consider two 171Ybþ ions with trap frequency
ωcom ¼ 2π × 1 MHz. Next, we consider N ¼ 4 ions to
demonstrate the scalability of our scheme. We assume that
the ions are initialized in a thermal state with n̄ motional
quanta. The gate sequence consists of four pulses of duration
τ ¼ 2π=δ, as illustrated in Fig. 2(a). Each pulse uses
adiabatic ramping for the electric field and laser interaction
to avoid nonadiabatic coupling of phonon modes. At the
end of the first pulse, we use π pulses on both ions to remove
the extra phases accumulated due to the last two terms
in Eq. (3). However, this spin-echo pulse does not fully
correct for the residual qubit-motion entanglement because
gi;jm ðj11iÞþgi;jm ðj00iÞ≠gi;jm ðj01iÞþgi;jm ðj10iÞ. This can be
compensated with one more spin-echo pulse on each ion
separately. To this end, the second pulse is applied to qubit 1
and the third pulse to qubit 2 or vice versa, with the electric
field switched off, see Fig. 2(a).
Gate fidelity and scalability.—We simulate the gate

dynamics generated by Eq. (1) and use process fidelity
to characterize its performance. For simplicity, we first
ignore the contribution of the stretch mode and set
(m ¼ com). In Fig. 2(b), we illustrate the gate mechanism
using the phase space dynamics for a two-ion crystal of
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171Ybþ prepared in the ground state of motion. For the
states j01i and j10i, ĝijcom ≈ 0. Thus, these states follow the
displacement generated by the electric field. On the other
hand, the other two states j11i and j00i are not significantly
displaced in phase space since the c.m. mode frequency is
shifted by the tweezers. The chosen gate parameters ensure
that the phases accumulated for these four states correspond
to a geometric phase gate.
For ions initialized in a thermal state n̄, the process

fidelity is given by [16]

F̄ðÛid; ÛHÞ ¼
P

ltr½Ûidσ̂
†
l Û

†
idσ̂lðÛHÞ� þ d2

d2ðdþ 1Þ ; ð4Þ

where σ̂lðÛHÞ≡ trFSðÛtw½jnihnj ⊗ σ̂l�Û†
HÞ is the projector

on one of the SU(2) d-dimensional representation of Pauli
matrices (here d ¼ 4 for a two-ion case) and on the Fock
state jni, Ûid is the ideal phase gate, and ÛH is the unitary
generated by the Hamiltonian shown in Eq. (1) in the
interaction picture.
In Fig. 3, we show the process fidelity of the proposed

gate for δ=2π ¼ 1 kHz in the single-mode approximation
with two different n̄, along with a more thorough calcu-
lation including the stretch mode. With the single-mode
approximation, shown in solid blue and dashed orange
lines, F̄ exceeds 99% at relatively low tweezer strength,
ωtw=ωcom ≳ 0.1. Fidelities higher than 99.9% can be
obtained for ωtw=ωcom ≳ 0.21. Higher tweezer intensity

also allow us to perform faster gates at larger detunings
while maintaining high fidelities. The green pentagons
show F̄ including the contribution of the stretch mode and
confirm the validity of the single-mode approximation. We
note that, when considering the contribution from both
modes, we need to take into account a small correction
to the electric field frequency μ. This originates from the
perturbation induced by the presence of tweezers on the
original eigenmodes of the system. The deviation can be
calculated either by perturbation theory (two ions) or by
exact diagonalization (four ions), which are shown in the
second row of Table I.
We demonstrate the scalability of the scheme by con-

sidering four ions in a harmonic potential under the
full tweezer Hamiltonian and including all four modes
of motion. As discussed above, for each ion pair, we correct
δ given the c.m. mode shift. We show that F̄ for each ion
pair at ωtw ¼ 2π × 254 kHz, as shown in Table I, does not
degrade compared to the two-ion crystal. This demonstrates
the scalability of our scheme subject to laser power limi-
tations since the required tweezer intensity ∝ N. However,
since the gate does not require the Lamb-Dicke regime, the

FIG. 3. Process fidelity as a function of tweezer strength for a
two-ion crystal at different δ and n̄ at ωcom ¼ 2π × 1 MHz. The
resulting gate time is 4τ with τ ¼ 2π=δ. The green pentagons
show the fidelity for a two-ion crystal taking into account the
contribution of both modes. The Fock-state cutoff for the thermal
state used in the calculations is nmax ¼ 20 for the single-mode
cases with n̄ ≤ 1 and nmax ¼ 100 for n̄ ≃ 10. For the two modes
case nc;max ¼ 14 and ns;max ¼ 10, with n̄c and n̄s, respectively,
the average phonon number in the c.m. and stretch mode.
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FIG. 2. (a) Pulse sequence used for the simulations; EðtÞ=E0

and IðtÞ=I0 are the normalized electric field and laser intensities,
respectively. At the end of each of the first three pulses, we
perform a π pulse on either ion 1 or 2. (b) Phase space dynamics
for a two-ion crystal in natural units. When the ions are in the
state j01i or j10i, the electric field makes them oscillate. For the
states j11i and j00i, the electric field is not resonant with the c.m.
mode. The residual motion of states j11i and j00i is highlighted
in the insets. The parameters used are δ ¼
2π × 0.001 MHz, E0 ¼ 0.269 mV=m, ωcom ¼ 2π × 1 MHz,
and ωtw ¼ 2π × 250 kHz.

TABLE I. Fidelities and detunings for all combinations of pairs
in a four-ion chain. All modes are in the ground state of motion,
ωtw ¼ 2π × 257 kHz and ωcom ¼ 2π × 1 MHz.

Pair 1 2 1 3 1 4 2 3

ð1 − FÞ104 3.7 4.7 2.4 1.1
ðωcom − μÞ (kHz) 1.212 1.325 1.488 1.162
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needed tweezer power can be limited by lowering ωcom
considerably.
Finally, we study the effect of noise Λ on the tweezer

intensity during the four pulses. We consider two scenarios
illustrated in Fig. 4. In Λdc, we consider shot-to-shot noise
at frequencies νΛ ≪ 1=τ and find that the spin-echo pulses
in the gate sequence build in resilience to this type of noise
(see Fig. 4). The second case is the worst case scenario:
noise contribution at the same frequency as the individual
laser pules (νΛ ∼ 1=τ). Then the dephasing in each pulse
adds up, lowering F̄ considerably. For big ion crystals,
inhomogeneities of the electric field gradient should also be
considered. Our simulations indicate that these do not affect
the F̄ significantly.
Experimental considerations.—The tweezer potential

takes the form ΦjjiðrÞ ∝ αjjiðλtwÞIðrÞ, with αjjiðλtwÞ as
the dynamic polarizability at the tweezer wavelength λtw
of qubit state jji and IðrÞ as the intensity pattern
[17]. Expanding a Gaussian intensity pattern with waist
w0 ≫ lm with lm ¼ ℏð2MωmÞ−1=2, we obtain ΦjjiðzÞ≈
Φjjið0Þ þMω2

jjiz
2=2, with ω2

jji ¼ −4Φjjið0Þ=ðMw2
0Þ [17].

Here, we assumed that the tweezer has the largest curvature
in the z direction and disregard the other directions.
We must identify qubit states with opposite dynamical

polarizabilities such that ω2
j1i ¼ −ω2

j0i. Qubits encoded in
the ground S1=2 and metastable D5=2 states of Caþ, Srþ, or
Baþ fulfill this condition. The differential polarizabilities of
these states can be tuned over a wide range by choosing the
tweezer wavelength and Zeeman substate mj of the D5=2

manifold [18]. Furthermore, it is beneficial to have no
residual differential Stark shift at the center of the tweezer,
as this may lead to dephasing of the qubits in case of laser
intensity fluctuations. The spin-echo sequence will elimi-
nate shot-to-shot variations, but not fluctuations within a

single implementation. Vanishing differential Stark shift in
the center of the tweezer can be straightforwardly obtained
using non-Gaussian hollow tweezers [19,20]. Another
solution is to use bichromatic tweezers with wavelengths

λð1Þtw and λð2Þtw and beam waists w1 and w2. We then require

that, in the center of the tweezer (z ¼ 0), Φð1Þ
j0i þΦð2Þ

j0i ¼
Φð1Þ

j1i þΦð2Þ
j1i andΦ

ð1Þ
j0i=w

2
1þΦð2Þ

j0i=w
2
2¼−Φð1Þ

j1i=w
2
1−Φð2Þ

j1i=w
2
2.

In the experimentally convenient limit where w1 ≪ w2, this

reduces to Φð1Þ
j0i ¼ −Φð1Þ

j1i and Φð2Þ
j0i −Φð2Þ

j1i ¼ 2Φð1Þ
j1i . Note

that the frequency sum and difference should not be close to
any transition, as this will lead to additional Stark shifts or
photon scattering.
As a practical example, we consider the qubit states

j0i ¼ jS1=2; mj ¼ 1=2i and j1i¼ jD5=2;mj¼3=2i in 40Caþ

[21]. We obtain Φð1Þ
j0i ¼−Φð1Þ

j1i at around λ1¼770 nm [18].
The second requirement can be met by setting
λ2 ≈ 900 nm. The relative close proximity of the D5=2 →
P3=2 transition at 854 nm causes photon scattering Γsc,
which limits the attainable coupling strength. We estimate

Γsc ¼ ΦðiÞ
jjiΓtr=Δ

ðiÞ
jji;ξ for each transition ξ, state jji, and

tweezer i with Γξ as the transition linewidth and ΔðiÞ
jji;ξ as

the frequency detuning. Demanding Γsc=2π ≲ 1 s−1, we

find jΦðiÞ
jjij≲ 20 MHz for all i and jji. This results in

jωtwj≲ 2π × 70 kHz for w2 ≫ w1 ¼ 1 μm.
It is also possible to use qubits that are encoded in the

ground S1=2 hyperfine or Zeeman states of the ions. Here,
circularly polarized tweezers may be used to obtain large
differential Stark shifts. However, this approach precludes
the use of magnetic field insensitive qubits [17,22]. One
solution is to make use of quadrupole transitions [23,24].
These have coupling strengths that are typically ∼2πa0=λ ∼
10−3 − 10−4 times smaller than for dipole-allowed tran-
sitions, with a0 as the Bohr radius, but have highly
suppressed photon scattering rates even at small detunings.
Tuning the tweezer wavelength far away from all dipole-
allowed transitions, the differential Stark shift originates
from the quadrupole transitions alone [17,22,23]. In case
only a single transition k0 obeys Δk0 ≪ ω0, with ω0 the
frequency difference between the qubit states and Δk0 the
detuning, we can make a two-level approximation for the
transition j0i → jk0i and obtain Φj0i ≈ νdipole þ Ω2

k0=ð4Δk0 Þ
while Φj1i ≈ νdipole, with Ωk0 as the Rabi frequency.
Approximating the Stark shift due to the dipole transitions
to arise mainly from a single (effective) transition,
νdipole ¼ Ω2

dipole=ð4ΔdipoleÞ, we get Ω2
k0=ð4Δk0 Þ ¼ −νdipole

if we set Δk0 ¼ −ϵ2Δdipole with Ωk0 ¼ ϵ ×Ωdipole. The
detuning Δdipole can be estimated as the frequency differ-
ence between the quadrupole transition and the strong
D1 and D2 transitions and lies typically in the 100-THz
range [25]. Therefore, we require Δk0 ∼ 1–100 MHz for

FIG. 4. Effect of noise Λ on the tweezer laser intensity at
frequencies νΛ ¼ 1=τ and shot-to-shot noise (νΛ ¼ 0) for
ωtw ∼ 2π × 180 kHz, δ ¼ 2π × 1 kHz, and ωc ¼ 2π × 1 MHz.
The points at νΛ ¼ 1=τ are taken assuming a random Gaussian
noise for each of the four gate pulses with a standard deviation
σ ¼ Λ1=τ. The points at νΛ ¼ 0 assume a change in the tweezer
intensity Λdc for times longer than the gate time τ.
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ϵ ¼ 10−3 − 10−4. Since we require, in addition, Δk0 < Ωk0

to avoid driving the transition, we get differential Stark
shifts of ∼0.1–10 MHz and ωtw ∼ 2πð30–300Þ= ffiffiffiffiffiffiffi

Mu
p

kHz,
with Mu as the mass of the ion in atomic mass units and
w0 ¼ 1 μm. By comparison, switching to a Laguerre-
Gaussian modewith radial index p ¼ 1, the Rabi frequency
in the center of the tweezer vanishes, whereas ωtw remains
unaltered for the same w0. In this situation, we only require
Δk0 < Ωk0 ðzmaxÞ, with zmax as the maximum amplitude of
motion of the ions during the gate. For the presented
calculations zmax ∼ 10 nm ≪ w0 such that ωtw can be
significantly larger than for Gaussian tweezers.
Discussion.—We have proposed and analyzed a new

architecture for performing quantum computation with
trapped ions that uses optical tweezers and oscillating
electric fields. The infrastructural simplicity of our scheme
makes it attractive, while the ability to individually address
the ions by the tweezer makes it universal. Furthermore, our
proposal does not rely on the Lamb-Dicke approximation
and is independent of the qubit separation. Residual qubit-
phonon entanglement that may lead to decoherence is
prevented by a spin-echo sequence. Taking experimental
considerations into account, the scheme can be performed
on optical qubits and on ground-state qubits. Here, either
circularly polarized or hollow tweezers such as those
derived from, e.g., Laguerre-Gaussian modes [19,20]
could be used. The challenge will be to supply sufficient
curvature to such tweezers while maintaining excellent
control. For this, active stabilization of the power and
direction of the tweezers may be required. Finally, it seems
feasible to consider a fast gate version of the proposed gate,
in analogy to Ref. [26], where electric field pulses are
combined with Rydberg excitation of the trapped ions in
order to implement quantum logic gates.
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