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The quantum Fisher information (QFI) is a fundamental quantity of interest in many areas from quantum
metrology to quantum information theory. It can in particular be used as a witness to establish the degree
of multiparticle entanglement in quantum many-body systems. In this work, we use polynomials of the
density matrix to construct monotonically increasing lower bounds that converge to the QFI. Using
randomized measurements we propose a protocol to accurately estimate these lower bounds in state-of-the-
art quantum technological platforms. We estimate the number of measurements needed to achieve a given
accuracy and confidence level in the bounds, and present two examples of applications of the method in
quantum systems made of coupled qubits and collective spins.
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First introduced in quantum metrology to measure the
ability for quantum states to perform interferometry beyond
the shot-noise limit [1,2], the quantum Fisher information
(QFI) plays a fundamental role in different fields, including
quantum information theory and many-body physics. As
enhanced sensitivity for metrology and sensing requires the
generation of multipartite entangled states [3], the QFI has
raised significant interest as a witness of entanglement. In
particular, the notion of entanglement “depth”—the mini-
mum number of entangled particles in a given state—and the
underlying structure of multipartite entanglement can be
related to the value of the QFI [4,5]. In many-body physics,
the ability for the QFI to reveal the entanglement of mixed
states makes it a key quantity in the study of spin models,
revealing in particular universal entanglement properties of
quantum states crossing a phase transition at finite temper-
ature [6] and highlighting the role of multipartite entangle-
ment in topological phase transitions [7]. This Letter
presents a protocol to estimate the QFI in state-of-the-art
quantum devices via randomized measurements.
The challenge to measure the QFI arises from it being a

highly nonlinear function of the density matrix. The QFI is
defined with respect to a given Hermitian operator A
and a quantum state ρ, and can be written in the following
closed form:

FQ ¼ 2Tr

�ðρ ⊗ 1 − 1 ⊗ ρÞ2
ρ ⊗ 1þ 1 ⊗ ρ

SðA ⊗ AÞ
�
; ð1Þ

where S is the swap operator defined through its action on
basis states ji1i, ji2i by Sðji1i ⊗ ji2iÞ ¼ ji2i ⊗ ji1i. We
clarify the form of Eq. (1)—noting that the fraction notation
is allowed by the fact that the numerator and denominator

commute—and relate it to the standard expression of
the QFI: FQ¼2

P
ði;jÞ;λiþλj>0½ðλi−λjÞ2=ðλiþλjÞ�jhijAjjij2,

with ρ ¼ P
i λijiihij, in the Supplemental Material [8]. For

pure states ρ ¼ jψihψ j, the QFI is proportional to the
variance of the operator A, FQ ¼ 4ðhψ jA2jψi − hψ jAjψi2Þ.
According to the quantum Cramér-Rao relation, the QFI
bounds the achievable precision in parameter estimation in
quantum metrology [4]. Furthermore, for N spins 1=2, with

a collective spin operator A ¼ 1
2

P
N
l¼1 σ

ðlÞ
μ [12], all sepa-

rable states satisfy FQ ≤ N [3]. This means that, ifFQ > N,
the state is entangled, and provides an advantage over all
separable states for performing quantum metrology.
The QFI can also be used to certify multipartite entan-

glement in terms of k-producibility, i.e., a decomposition
into a statistical mixture of tensor products of k-particle
states, or m-separability, i.e., a decomposition into a
statistical mixture of products of at least m factors, of
the state ρ [5,13,14]. In particular, the inequality FQ >
ΓðN; kÞ, with ΓðN;kÞ¼bN=kck2þðN−bN=kckÞ2, implies
that a state is not k-producible, i.e., that it has an
entanglement depth of at least kþ 1. Note that one can
show the QFI being above a certain threshold value by
measuring a lower bound of it. This includes quantities
associated with the expectation value of an observable,
such as spin squeezing [3,15–19], or multiple quantum
coherence [20]. Recently, nonlinear lower bounds to the
QFI, not accessible by standard observable measurements,
have also been introduced [21–26] and measured [27].
However, the finite distance between these bounds and the
QFI typically limits the ability to certify quantum states for
metrology, or to detect multipartite entanglement. If the
quantum state is in a thermal state, the QFI can also be
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measured via dynamical susceptibilities [28]. However, the
states used in the context of quantum metrology [4], and
many-body dynamics [29], are usually out of equilibrium.
Here, we propose a systematic and state-agnostic way to

estimate the QFI by measuring a converging series of mono-
tonically increasing approximations Fn, F0≤F1≤…≤FQ,
which rapidly tend to FQ as n increases. Thus, each Fn,
being a lower-bound to the QFI, allows the verification of
quantum metrological advantage and/or multipartite entan-
glement of the quantum state ρ. Moreover, each function Fn,
being a polynomial function of the density matrix ρ, can be
accessed by randomized measurements. Such protocols only
require single qubit random rotations and measurements and
have been successfully applied to obtain Rényi entropies
[30–34], negativities [11,35–37], state overlaps [38] (which
lead to the sub-QFI, a lower bound on the QFI measured in
Ref. [27]), scrambling [39,40], and topological invariants
[41,42]. Note that multipartite entanglement conditions can
also be expressed as statistical moments of randomized
measurements [43–47].
Construction of converging lower bounds.—We define

the bounds Fn as

Fn ¼ 2Tr

�Xn
l¼0

ðρ ⊗ 1− 1 ⊗ ρÞ2ð1⊗ 1 − ρ⊗ 1− 1 ⊗ ρÞl

× SðA ⊗ AÞ
�
: ð2Þ

The construction of the above bounds is detailed in the
Supplemental Material [8], where we show that ∀ n ∈ N,
Fn ≤ FQ, and Fn ≤ Fnþ1 with the inequalities saturating
for pure and fully mixed states. For the first two bounds,
we obtain

F0 ¼ 4Trðρ½ρ; A�AÞ; ð3Þ

F1 ¼ 2F0 − 4Trðρ2½ρ; A�AÞ: ð4Þ

where [,] is the commutator. As shown in the Supplemental
Material [8], the constructed series Fn converges exponen-
tially with n to FQ. Note that the quantity F0 was shown to
be a lower bound of the QFI in Refs. [21–24], while the
sub-QFI of Refs. [26,27] is a lower bound to F0. We remark
that F0 was proven to be faithful to the QFI with respect to
global extrema [26].
Figure 1(a) illustrates this convergence for different purities

of the noisy GHZ state ρðpÞ ¼ ð1 − pÞjGHZNihGHZN j þ
p1=2N with jGHZNi ¼ ðj0i⊗N þ j1i⊗NÞ= ffiffiffi

2
p

, and A ¼
1
2

P
N
l¼1 σ

ðlÞ
z (where to maximize the QFI obtained for this

state, we choose the direction μ ¼ z for A). GHZ states of
up to 20 qubits have been realized in recent quantum
platforms [48–50]. This class of states can be used to achieve

enhanced sensitivities in quantum metrology [4] as they
exhibit nontrivial multipartite entanglement, which cannot be
detected using spin-squeezing inequalities [4]. One of the
important consequences of having a series of monotonically
increasing bounds is that one detects multipartite entangle-
ment more efficiently as n increases. This is illustrated in
Fig. 1(b),where for various values ofN and k, we consider the
maximal valuep�, such that an entanglement depth of at least
kþ 1 is detected via the inequality Fn > ΓðN; kÞ [which
impliesFQ > ΓðN; kÞ]. The noise tolerancep� increases as a
function of the order n of the lower bounds and is upper
bounded by the p� value corresponding to FQ.
Randomized measurement protocol.—Let us now show

how the bounds Fn can be accessed from randomized
measurements. Such protocols first gave access to the
purity Trðρ2Þ [31], and then later to any polynomial
of the density matrix [10,11,33,36]. What makes
our bounds Fn accessible from randomized measurements
data is precisely that they are polynomials of ρ (of
order nþ 2).
A schematic of the protocol is shown in Fig. 2(a). For

concreteness, we first consider a system of N qubits, and
discuss the case of collective spin systems further below. In
our protocol, the N-qubit quantum state ρ is prepared in the
experiment and we apply local random unitaries ui sampled
from the circular unitary ensemble (CUE) (or a unitary
2-design [51]). We record as a bit string s ¼ s1;…; sN
the outcomes of a measurement in a fixed computational
basis. This sequence is repeated for M distinct unitaries
u ¼ u1 ⊗ � � � ⊗ uN , for which classical bit strings sðrÞ with
r ¼ 1;…;M are stored [52].
From this data, we have enough information to recon-

struct the density matrix in the limit M → ∞ [53–55]. To
access directly the function Fn, we use the classical shadow
formalism [10], and assign to each recorded bit-string

sðrÞ ¼ sðrÞ1 ;…; sðrÞN an operator

(a) (b)

FIG. 1. Convergence of the lower bounds and entanglement
depth certification. Panel (a) shows the QFI (dashed lines) and its
lower bounds Fn as a function of the order n (dots connected by
solid lines) for a 10-qubit GHZ state mixed with different white
noise strengths p (see legend). The convergence nature of Fn is
commented on in the Supplemental Material [8]. Panel (b) shows
for noisy GHZ states, the threshold value of white noise p� as a
function of the number of qubits N to detect different entangle-
ment depths of (at least) kþ 1 (see legend) by F0, F1, F2, and FQ

(light to dark).
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ρ̂ðrÞ ¼ ⊗
N

l¼1
½3ðuðrÞl Þ†jsðrÞl ihsðrÞl juðrÞl − 12�: ð5Þ

The operator ρ̂ðrÞ is known as a “classical shadow” in the
sense that the average over the unitaries and the bit-string
measurement results gives E½ρ̂ðrÞ� ¼ ρ. For different inde-
pendently sampled shadows labeled r, r0, we obtain
similarly that ρ̂ðrÞρ̂ðr0Þ are unbiased estimations of ρ2

[10]. This approach using U-statistics [9] generalizes to
estimate any power ρj, by using j different shadows
ρ̂ðr1Þ;…; ρ̂ðrjÞ. Then by linearity, we write the unbiased
estimator F̂n of Fn using combinations of M ≥ nþ 2

different shadows ρðrÞ. In particular, for n ¼ 0, 1, from
Eqs. (3)–(4) we obtain the following unbiased estimators
for F0 and F1, respectively:

F̂0 ¼
4

2!

�
M

2

�
−1X

r1≠r2

Trðρ̂ðr1Þ½ρ̂ðr2Þ; A�AÞ; ð6Þ

F̂1¼2F̂0−
4

3!

�
M

3

�−1 X
r1≠r2≠r3

Trðρ̂ðr1Þρ̂ðr2Þ½ρ̂ðr3Þ;A�AÞ: ð7Þ

Notice that, using independent measurements, the experi-
mental setting of randomized measurements remains
the same as in quantum state tomography (QST). To
measure a N-qubit quantum state ρ of rank χ using
QST with ϵ− accuracy in terms of trace distance, requires

M ¼ Oðχ22N=ϵ2Þ measurements [56]. Meanwhile for ran-
domized measurements that give access to polynomial
functions of ρ, the number of measurements to overcome
statistical errors scale as 2aN with a ∼ 1 [31,38,39].
Furthermore, in tomography the classical postprocessing
of the measurement data is expensive, as it is based on
storing and manipulating exponentially large matrices. In
contrast, the use of classical shadows in randomized
measurements, which have a tensor product structure,
cf. Eq. (5), leads to cheap estimation algorithms in
postprocessing run-time and memory usage [10,11].
Statistical errors.—Statistical errors associated with the

estimation of Fn arise due to the application of a finite
numberM of random unitary transformations. In particular,
as n increases, while the bound Fn becomes tighter the
degree of the polynomial in ρ of F̂n, evaluated with M
different shadows, increases. In order to provide rigorous
performance guarantees for our protocol, we analytically
study the probabilities Pr½jF̂n − Fnj ≥ ϵ� that the statistical
errors are larger than a certain accuracy ϵ. Using the
Chebyshev’s inequality Pr½jF̂n − Fnj ≥ ϵ� ≤ Var½F̂n�=ϵ2,
we relate these to the variance Var½F̂n� of our estimations.
As shown in the Supplemental Material [8], we provide an
upper bound to Var½F̂n� by generalizing the results of
Ref. [10,11] to arbitrary density matrix polynomials. This
allows us to calculate for any N-qubit quantum state ρ the
required number of measurementsM to estimate F̂n within
a certain confidence interval, so that Pr½jF̂n − Fnj ≥ ϵ� ≤ δ
for a given δ. Our results show that the required value ofM
scales as α2N with respect to N, where α can be calculated
for any order n based on the knowledge of the state ρ and
the operator A [8]. As an illustration, we calculate in
particular the value of α for pure GHZ states, and in the
limit of high accuracy ϵ → 0. We find that, while F0 can be
evaluated with fewer measurements compared to F1, there
is an overall scaling of 2N for both required values of M.
To complement our analytical study, we numerically

study the error scalings for F0 and F1 by simulating the
experimental protocol. The average statistical error E is
computed by averaging over 50 simulated experimental
runs the relative error Ê ¼ jF̂n − Fnj=Fn of the estimated
bound F̂n. We consider the N-qubit noisy GHZ state with

A ¼ 1
2

P
N
l¼1 σ

ðlÞ
z . Figures 2(b),2(c) show the scaling of the

average statistical error in estimating F0 and F1, as a
function of rescaled number of measurements M=2aN with
a being adjusted by collapsing the data obtained for
different N onto a single curve. The figures show that
the required number of measurements to obtain an error
accuracy of 0.1 scales overall as ∼20.7N and ∼20.8N for F0

and F1, respectively. In particular, for largeM we observe a
1=

ffiffiffiffiffi
M

p
scaling, which is the standard error decay obtained

by performing an empirical Monte Carlo average. In the
regime of smallerM, the statistical error being high, decays

(a)

(b) (c)

FIG. 2. Protocol and statistical error scaling. Panel (a) illustrates
the randomized measurement protocol needed to estimate the
lower bounds of the QFI. Local random unitaries are applied
followed by measurements performed in a fixed computational
basis. Panels (b) and (c) show the error scaling for F0 and F1,
respectively, by considering a GHZ state mixed with a depolari-
zation noise of strength p ¼ 0.25, and for various values of N
(see legends). The dashed black lines highlight the different error
scalings ∝ 1=M and 1=

ffiffiffiffiffi
M

p
.
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much faster as 1=M. These two error regimes are also
apparent in the expression of the variance (see
Supplemental Material [8]). Second, as expected from
the analytical expressions and seen above from the scaling
exponents of F0 and F1, we observe that estimating F1

requires slightly more measurements compared to F0 (see
also Supplemental Material [8] for nonrescaled data). Note
that similar error scalings, and transition from 1=

ffiffiffiffiffi
M

p
to

1=M behaviors have been observed for other types of cubic
order terms related to entanglement negativities [11,35]. In
addition, importance sampling approaches can be incorpo-
rated in randomized measurement protocols, leading to
change of scaling exponents governing statistical errors,
and thus drastic reductions of the required number of
measurements [57–60].
Systematic errors.—Present quantum devices are vulner-

able to systematic errors due to noise [61]. However, the
effect of noise occurring during a measurement can be
mitigated. First, in the presence of depolarization or qubit
readout errors, estimation formulas from randomized mea-
surements can be corrected to provide unbiased estimations
[34,38,62,63]. Furthermore, in the classical shadows for-
malism, robust estimations can be performed in the
presence of an unknown noise channel. This is achieved
via a calibration step, which uses a state that can be
prepared with high fidelity [64–66]. Under the assumption
of gate-independent Markovian noise, the data obtained
from such calibration provide a model to build robust
classical shadows from randomized measurements. In the
presence of gate-dependent noise, this framework can also
be used, showing as well error mitigation [64–66]. These
techniques can be applied readily in our protocol.
Protocol for collective spin systems.—We now extend

our approach to an ensemble of N particles described by a
collective spin S ¼ ðN=2Þ. These systems implemented
with ultracold atoms or trapped ions, are relevant to
quantum metrology [15–18,28] as they can feature large-
scale multipartite entanglement [19]. Remarkably, our
protocol provides access to the series Fn in these systems
with relatively low numbers of measurements M.
Consider for concreteness a set of N ultracold bosons in

a double-well potential, as illustrated in Fig. 3(a). It is
convenient to write the state of the system in terms ofN þ 1
Fock states jn1; n2i or jn1 − n2i with n1 ∈ 0;…; N, the
number of atoms in the left well and n2 ¼ N − n1 atoms in
the right well. The Bose-Hubbard Hamiltonian Ht descri-
bing this system reads

Ht¼
J
2
ðâ†LâRþH:cÞþUint

2

X
l¼L;R

n̂lðn̂l−1ÞþΔtðn̂L− n̂RÞ;

ð8Þ

where, n̂L;R ¼ â†L;RâL;R are the number operators given in

terms of creation â†L;R and annihilation âL;R operators, J is

the tunneling matrix element, Uint is the on-site interaction
energy, andΔt is a random energy offset, cf. Fig. 3(a). It can
be equivalently written using spin S ¼ ðN=2Þ operators
[67–69]. The random unitaries U can be experimentally
generated as U ¼ e−iHηT � � � e−iH1T by choosing different
random energy difference Δη in Hη for some time interval
T. The convergence of such unitariesU to unitary 2-designs
(which are required in order to build classical shadows)
as a function of the depth η has been studied in
Refs. [31,62,70–72]. Note that these unitaries U, consid-
ered here for randomized measurements, can also be used
to generate metrologically useful quantum states [73].
Compared to the situation of N qubits, the protocol

to measure the series Fn in this system differs only in
applying global random unitariesU instead of local random
unitaries u. We first prepare a state ρ of interest in this
system, then generate and apply random unitaries U
followed by measurements of the populations ðn1; n2Þ in
each well. Repeating this procedure for M unitary matrices

UðrÞ, we collect measurement results sðrÞ ¼nðrÞ1 −nðrÞ2 with
r¼1;…;M. A classical shadow ρ̂ðrÞ of ρ [10,41,53] is
constructed from each measurement outcome sðrÞ and the
applied unitary UðrÞ as

ρ̂ðrÞ ¼ ½ðN þ 2ÞðUðrÞÞ†jsðrÞihsðrÞjUðrÞ − 1Nþ1�: ð9Þ

Here, the classical shadow is a matrix of dimension
ðN þ 1Þ × ðN þ 1Þ. From this, we build our series of
estimators F̂n from the measurement data in the same
way as shown earlier for the N-qubit systems.

(a)

(b) (c)

FIG. 3. Protocol and error scalings for collective spin models.
Panel (a) illustrates the two-site collective spin model followed by
the randomized measurement protocol implementing global
random unitaries. The lower panels show the statistical error
scalings of (b) F0 and (c) F1 for a N00N state of bosonic
ensembles mixed with depolarization noise of strength p ¼ 0.25
as a function of rescaled axis M=Na, and for various values of N
(see legends).
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We investigate the statistical error scalings to estimate
the lower bounds F0 and F1 by computing the average
relative error E. Consider the N00N state given by
jN00Ni ¼ ð1= ffiffiffi

2
p ÞðjN; 0i þ j0; NiÞ [4]. Such states pro-

vide optimal metrological sensitivities and are genuinely
multipartite entangled, i.e., they have an entanglement
depth of N [4]. The observable A is taken to be the
population difference between the two wells and is defined
as A ¼ n̂1 − n̂2. We numerically analyze the scaling of
statistical errors by directly generating global random
unitaries from the CUE. For simplicity, we study a state
ρðpÞ ¼ ð1 − pÞjN00NihN00Nj þ p1=ðN þ 1Þ subject to
depolarization noise of strength p ¼ 0.25. Various other
noise models have been studied for macroscopic super-
position states in Refs. [74–77]. In the case of an a priori
unknown noise channel, one can use again the formalism of
robust shadows to correct our estimates of Fn [64–66].
Figures 3(b),3(c) show that the required number of mea-
surements here no longer scale exponentially but subpo-
lynomially in the number of atoms N for F0 and F1. This is
attributed to the fact that the Hilbert space dimension scales
linearly in N. The required number of measurements for
obtaining an error of 0.1 is found to scale as Na0 and Na1

with a0 ∼ 0.6 and a1 ∼ 0.75 for F0 and F1, respectively.
Conclusion and outlook.—Our method to access the

QFI can be used for asserting states capable of providing
enhanced metrological sensitivities, or in the context
of entanglement detection and quantum simulation.
Importantly, we can make predictions on the required
number of measurements to detect entanglement with a
certain confidence interval. As a future direction, it would be
interesting to compare the entanglement detection “power”
of different protocols based on randomized measurements.
This includes in particular approaches based on the positive
partial transpose condition [11,27,36], which can be applied
in the multipartite case [78], and on statistical correlations of
Pauli measurements [43–47].
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