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I show that nondecreasing entropy provides a necessary and sufficient condition to convert the state of a
physical system into a different state by a reversible transformation that acts on the system of interest and a
further “catalyst,” whose state has to remain invariant exactly in the transition. This statement is proven
both in the case of finite-dimensional quantum mechanics, where von Neumann entropy is the relevant
entropy, and in the case of systems whose states are described by probability distributions on finite sample
spaces, where Shannon entropy is the relevant entropy. The results give an affirmative resolution to the
(approximate) catalytic entropy conjecture introduced by Boes et al. [Phys. Rev. Lett. 122, 210402 (2019)].
They provide a complete single-shot characterization without external randomness of von Neumann
entropy and Shannon entropy. I also compare the results to the setting of phenomenological thermody-
namics and show how they can be used to obtain a quantitative single-shot characterization of Gibbs states
in quantum statistical mechanics.
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A central question in quantum information theory is
which quantum states on some physical system may be
transformed into which other states on the same (or a
different) physical system by a given set of operations. This
question underlies quantum resource theories, such as
entanglement [1–4], thermodynamics [5–10], or asymme-
try [11–13] (see Ref. [14] for a review on quantum resource
theories). Common to most resource theories is that they
allow for probabilistic mixing of operations, i.e., to use a
source of classical randomness (such as a coin toss) to
decide on the operation that is implemented. This use of
randomness immediately implies that the resource theory is
convex, which greatly simplifies the mathematical analysis.
While often a natural assumption due to the commonplace
access to (quasi)randomness and classical communication,
one may ask what happens if either one considers the cost
of classical or quantum randomness explicitly or simply
disallows the use of classical or quantum randomness. In
the most extreme limit, one would then end up only
allowing the use of unitary operations and the question
of which states can be interconverted becomes trivial:
namely, all those states that are unitarily invariant, or in
other words, all states with the same spectrum (including
multiplicities).
In many resource theories the use of a catalyst is

operationally well motivated and may greatly enrich the
set of possible state transitions [9,15–22]. A catalyst is a
system that remains invariant in a given process, but may or
may not, depending on the resource theory, build up
correlations to other systems. Because its state does not
change in a process, no resources are used up and the
catalyst may be used again to facilitate further state

transitions on other systems—this is conceptually similar
to catalysts in chemistry or the ubiquitous “periodically
working machines” in thermodynamics. One may there-
fore wonder what happens if we consider only unitary
operations together with the possibility for catalysts.
Interestingly, Ref. [22] found that in this setting the von
Neumann entropy plays a special role due to its subaddi-
tivity property (see below). It was, in fact, conjectured that
the von Neumann entropy is the only constraint for state
transitions once one allows for arbitrary small errors on the
system (but not the catalyst). This conjecture was called
“catalytic entropy conjecture” and can also be formulated
in the classical setting as a conjecture connecting Shannon
entropy to catalytic permutations of probability distribu-
tions. The ideas behind this conjecture already have found
application in the context of thermodynamics and fluc-
tuation theorems [23,24].
The special role of von Neumann entropy is surpris-

ing for several reasons: Typically, the Shannon or von
Neumann entropy appears in settings involving many
weakly correlated systems due to the phenomenon of
“typicality” [25–27]. It was therefore long believed that
the von Neumann entropy only plays a special role in
asymptotic settings, such as the thermodynamic limit in
physics or the limit of many identically and independently
distributed signals in information theory. In particular, in
resource theories involving free randomness and allowing
for catalysts (that, however, may not become correlated to
the system of interest), state transitions are usually char-
acterized by an infinite set of constraints [9,18–20]. It was
only very recently first conjectured and then proven that
these conditions may collapse to the von Neumann entropy
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(or similar quantities, such as relative entropy or free
energy) if one allows for catalysts that become correlated
to the system [28–34]. However, these settings still made
use of external randomness—either by allowing for
classical randomness explicitly or allowing free access to
systems such as heat baths, which can be seen as sources of
randomness. It is thus interesting that the catalytic entropy
conjecture posits that von Neumann entropy plays such a
special role in situations that neither allow for the use of
external randomness, nor require an asymptotic limit. This
Letter provides an affirmative resolution of the catalytic
entropy conjecture.
The catalytic entropy conjecture can also be formulated

in full analogy in the classical case by replacing finite-
dimensional density matrices with probability distributions
on finite sample spaces, unitary operations with permuta-
tions (reversible transformations on the sample space), and
von Neumann entropy with Shannon entropy. In the main
text of this Letter, we will only consider the quantum case
and only briefly comment on how to prove the classical
version of our main result. A full proof of the classical
result is given in the Supplemental Material [35]. While the
proof of the classical result also implies the quantum result,
it has the drawback of requiring a larger catalyst, in general.
Setting and main result.—Throughout we consider a

system S described by density matrices ρ and ρ0 on a
Hilbert space of dimension d. In the following, we write
HðρÞ for von Neumann entropy, which is defined as

HðρÞ ¼ −Tr½ρ logðρÞ�: ð1Þ

Von Neumann entropy is continuous in ρ [38,39] and has
several useful properties, such as unitary invariance [HðρÞ¼
HðUρU†Þ for any unitaryU], additivity [Hðρ⊗σÞ¼HðρÞþ
HðσÞ], and subadditivity: Hðρ12Þ ≤ Hðρ1Þ þHðρ2Þ, where
ρ12 is a bipartite quantum state with marginals ρ1 and ρ2.
Finally, denote by Dðρ; ρ0Þ ≔ 1

2
kρ − ρ0k1 the trace distance

between two density matrices. We then define catalytic state
transitions formally as follows (see also Fig. 1).
Definition 1.—Definition 1 (approximate catalytic trans-

formation).—Consider two finite-dimensional density
matrices ρ and ρ0 on the same system S. We write
ρ→ϵ ρ

0 if there exists a finite-dimensional density matrix
σ on a system C and a unitary U on SC such that

TrS½Uρ ⊗ σU†� ¼ σ ð2Þ

and

DðTrC½Uρ ⊗ σU†�; ρ0Þ ≤ ϵ: ð3Þ

The following main result of this Letter then shows that
the set of states that are reachable from a given state ρ is
given exactly by the set of states with higher von Neumann
entropy:

Theorem 2.—(catalytic transformations characterize
von Neumann entropy).—The following are equivalent:
(i) ρ→ϵ ρ

0 for all ϵ > 0. (ii) Hðρ0Þ ≥ HðρÞ.
Before coming to the proof of this statement, let us first

discuss the formal similarity between the theorem and the
corresponding setup in thermodynamics and then give an
application for quantum statistical mechanics.
Analogy with thermodynamics.—Let us consider the

following idealized, but ubiquitous setting of a thermo-
dynamic work process acting on three systems: A system S
composed of a working substance and all other parts that
may change in the process (such as heat baths), a collection
of systems C composed of all systems that take part in the
process but return to their initial state when the process has
finished (gears, pistons, etc.), and finally, an idealized
work-storage device W with vanishing entropy (e.g., a
purely mechanical device such as a suspended weight in a
uniform gravitational field). Since the system C is cyclic, it
does not contribute any energy or entropy to the process.
Similarly, W only contributes or absorbs the work neces-
sary for the process, but does not act as a source or sink of
entropy. Let the initial and final states of S be labeled by a
and b, respectively. By the second law of thermodynamics,
the considered process can only be possible if the entropy
of S is nondecreasing:HðbÞ ≥ HðaÞ (we use the same letter
for thermodynamic entropy as for von Neumann or
Shannon entropy). Conversely, and importantly, however,
it is commonly assumed in setting up the thermodynamic
framework that for any two states a, b of S there is some
such idealized work process connecting the two states (for a
very clear, recent exposition, see [40]). Indeed, this is
required to be able to consistently define a thermodynamic
entropy. Therefore, states a and b can be connected by such
a process if and only if HðbÞ ≥ HðaÞ, in complete analogy
with Theorem 2, where the role of W is played by the
external laboratory implementing the unitary U. In the
thermodynamic setting, the system C is usually left
implicit, but is clearly physically necessary and its precise
design depends on the states a and b. While in the
thermodynamic case the source of the increase of entropy
is left unspecified, in the microscopic case discussed
here it is due to the build up of correlations between S
andC. Explicitly, we haveHðρ0Þ −HðρÞ ¼ IðS0∶CÞ, where

FIG. 1. A catalytic transition: A unitary operation U is applied
to systems S and C in the state ρ ⊗ σ. The resulting reduced state
on S is (arbitrarily close to) ρ0, while the reduced state on C is
preserved exactly, but correlated to S (indicated by the dashed
lines). The main result of this Letter shows that a matching σ and
U can be found if and only if Hðρ0Þ ≥ HðρÞ.
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IðS0∶CÞ denotes the mutual information between S and C
after the unitary evolution.
Quantitative single-shot characterization of Gibbs

states.—Let us now illustrate the use of the main result
with an application in quantum statistical mechanics. We
first have to establish some background material. A
“passive state” is any quantum state ρ whose energy (with
respect to some fixed HamiltonianH) cannot be lowered by
a unitary transformation. Equivalently, we may say that no
work can be extracted from a passive state using unitary
operations. Even though ω is passive, it is not necessarily
completely passive, meaning that a positive amount of
energy

W̄ðρÞ ≔ lim
n→∞

1

n
sup
U
ðTr½ρ⊗nĤn� − Tr½Uρ⊗nU†Ĥn�Þ

may be extracted per copy if many copies of ρ are available.
Here, Ĥn ≔

P
n
j¼1Hj with Hj ≡ H is the total Hamiltonian

on n copies. Let us assume for simplicity that the ground
state of H is unique. It has been proven that [41]

W̄ðρÞ ¼ Tr½ρH� − Tr½ωβðρÞðHÞH�; ð4Þ

where ωβðHÞ ≔ expð−βHÞ=Tr½expð−βHÞ� denotes a Gibbs
state and βðρÞ ≥ 0 is chosen such that H½ωβðρÞðHÞ� ¼ HðρÞ
[if HðρÞ ¼ 0, one has to take the limit β → þ∞]. Thus, the
only completely passive states are ground states and Gibbs
states with positive temperature [42,43].
The above characterization of Gibbs states relies on a

thermodynamic limit. It was observed in Ref. [23], and
discussed in detail for the particular case of three-level
systems, that the energy of passive states may, nevertheless,
in general, be reduced using catalytic transitions instead of
unitary operations, unless the state in question is a Gibbs
state. This may be surprising, since the catalyst, by virtue of
not changing its state, cannot compensate for energetic
changes. It was an open problem to determine how much
work can be extracted from an arbitrary state using a single
catalytic transformation [44]. Let us denote this quantity by

WcatðρÞ ≔ sup
ρ→0 ρ

0
ðTr½ρH� − Tr½ρ0H�Þ: ð5Þ

Then Theorem 2 immediately leads to the following
corollary, which shows that catalysts allow one to extract
the same amount of energy from a single passive states as,
on average, from asymptotically many copies:
Corollary 3.—WcatðρÞ ¼ W̄ðρÞ.
Proof.—By Theorem 2 and continuity, we have

WcatðρÞ ¼ sup
ρ0∶Hðρ0Þ≥HðρÞ

ðTr½ρH� − Tr½ρ0H�Þ: ð6Þ

By concavity of von Neumann entropy, the optimizer
must have Hðρ0Þ ¼ HðρÞ. But by Gibbs variational

principle, ωβðρÞðHÞ is the state with lowest energy
among all states with entropy HðρÞ. Hence WcatðρÞ ¼
Tr½ρH� − Tr½ωβðρÞðHÞH� ¼ W̄ðρÞ. ▪
Proof of Theorem 2.—The direction (i) ⇒ (ii) follows

directly from subadditivity, unitary invariance, and con-
tinuity of von Neumann entropy: For a given ϵ, denote by
ρ0ϵ the final state on S. Then we have

Hðρ0ϵÞ þHðσÞ ≥ H½Uðρ ⊗ σÞU†� ¼ HðρÞ þHðσÞ; ð7Þ
and hence Hðρ0ϵÞ ≥ HðρÞ. By continuity, we thus find
Hðρ0Þ ≥ HðρÞ.
The converse direction (ii) ⇒ (i) requires several

Lemmas. First, we collect a combination of some standard
results on typicality and majorization. We write ρ≽ρ0 if
ρ majorizes ρ0, meaning that there exists a proba-
bility distribution qi over unitaries Vi such that ρ0 ¼P

i qiViρV
†
i . Similarly, wewrite a≽b for two vectors a; b ∈

Rd if there exists a probability distribution qi over
permutation matrices πi such that a ¼ P

i qiπib.
Lemma 4.—(typicality and majorization).—Let ρ and ρ0

be two finite-dimensional density matrices of dimension d
withHðρÞ < Hðρ0Þ. Then for any ϵ > 0 and large enough n
there exists a state ρ0ϵ;n such that ρ⊗n≽ρ0ϵ;n and
Dðρ0ϵ;n; ρ0⊗nÞ ≤ ϵ. Moreover, the error ϵ can be bounded as

ϵ ≤ O½expð−nΔH2=4Þ�; ð8Þ
with ΔH ≔ Hðρ0Þ −HðρÞ, and ρ0ϵ;n may be chosen to have
the same eigenbasis as ρ0⊗n.
A proof sketch of Lemma 4 is given in the Supplemental

Material [35]. It is clear that the given error bound is not
optimal for every choice of ρ and ρ0, since, for example,
ϵ ¼ 0 is possible if ρ≽ρ0. However, Ref. [45] shows that the
given error bound is essentially optimal up to constants as a
bound that does not take into account detailed information
about ρ and ρ0. In the Supplemental Material [35], we use
this to give an estimate of the size of the catalyst.
The next Lemma will be essential to construct a

candidate catalyst by making use of Lemma 4. It is based
on the Schur-Horn theorem, which states that, for any d × d
Hermitian matrix, its vector of eigenvalues λ majorizes the
vector of diagonal elements in every orthonormal basis.
Conversely, every vector that is majorized by λ may be
obtained as the diagonal elements in a suitable orthonormal
basis. In particular, if p and p0 denote the ordered vectors of
eigenvalues of two density matrices ρ and ρ0, respectively,
then ρ≽ρ0 if and only if p≽p0. In the following, we denote
by Dρ0 the “dephasing channel” in the eigenbasis of ρ0 that
acts as

Dρ0 ½ρ� ¼
X
i

jiihijρjiihij; ð9Þ

where the jii constitute an orthonormal eigenbasis of ρ0.
Lemma 5.—(basic lemma).—Let HðρÞ < Hðρ0Þ and let

Dρ0 represent the dephasing channel in the eigenbasis of ρ0.
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Then, for any ϵ > 0 there exists an n ∈ N and a unitary U
such that, for any 1 ≤ k ≤ n,

Dðρ0;Dρ0 ½χk�Þ ≤ ϵ; χ ≔ Uρ⊗nU†; ð10Þ
where χk ≔ Trf1;…;ngnfkg½χ�. The error ϵ scales as in
Lemma 4.
Proof.—We make use of the state ρ0ϵ;n guaranteed by

Lemma 4. By the Schur-Horn theorem, there exists a
unitary U such that

ρ0ϵ;n ¼ D⊗n
ρ0 ½χ�: ð11Þ

However, we have that (writing k̄ ≔ f1;…; ngnfkg)

Dρ0 ½χk� ¼ Trk̄½ðDρ0 ⊗ 1k̄Þ½χ�� ¼ Trk̄½D⊗n
ρ0 ½χ�� ¼ Trk̄½ρ0ϵ;n�

by locality of quantum mechanics. But since the trace
distance is nonincreasing under partial traces, we then find

Dðρ0;Dρ0 ½χk�Þ ≤ Dðρ0⊗n; ρ0ϵ;nÞ ≤ ϵ: ð12Þ

▪
The construction of the unitary U guaranteed by the

Schur-Horn theorem is explained in the Supplemental
Material [35]. The final Lemma that we require provides
a way for us to get rid of unwanted coherences (arising
from Lemma 5) in the final state without correlating the
catalyst internally (which would spoil the catalyst).
Lemma 6.—(no propagation of correlations for mixed

unitary channels).—Consider a mixed unitary quantum
channel C½·� ¼ P

i piVi · V
†
i acting on a system S, where

the pi denote probabilities and the Vi are unitary operators.
Dilate C using an auxiliary system C and state σ ¼P

i pijiihij using the unitary V ≔
P

i Vi ⊗ jiihij as

C½ρ� ¼ Tr2½Vρ ⊗ σV†�: ð13Þ

Finally, apply the dilation to a state ρSS̄ on S and a further
system S̄. Then

TrS½ðV ⊗ 1S̄ÞρSS̄ ⊗ σðV† ⊗ 1S̄Þ� ¼ ρS̄ ⊗ σ: ð14Þ

That is, the dilating system C is catalytic and remains
uncorrelated to S̄.
Proof.—The result immediately from the unitary invari-

ance of the (partial) trace,

TrS½ðV ⊗ 1S̄ÞρSS̄ ⊗ σðV† ⊗ 1S̄Þ� ð15Þ

¼
X
i

piTrS½ðVi ⊗ 1S̄ÞρSS̄ðV†
i ⊗ 1S̄Þ� ⊗ jiihij

¼
X
i

piρS̄ ⊗ jiihij ¼ ρS̄ ⊗ σ: ð16Þ

▪

We are now in position to prove (ii)⇒ (i) of Theorem 5.
The proof proceeds in two parts. First we construct a
catalyst σ1 for the exact transition from ρ to the equal
mixture

χ̄ ≔
1

n

Xn
k¼1

χk ð17Þ

of the states χk ¼ Trk̄½χ�, where χ is the state from
Lemma 5. Then we use a second catalyst R in state σ2
to implement the dephasing map and obtain Dρ0 ½χ̄�, which
is ϵ close to the target ρ0. The part R of the catalyst thus
effectively acts as a source of randomness. By Lemma 6
and the fact that the dephasing map is a mixed unitary
channel, this second part can be done in such a way that the
two parts of the catalyst remain uncorrelated. Therefore,
the two-step process is still catalytic when both parts of the
catalyst are considered as one joint catalyst in state
σ1 ⊗ σ2. As a side comment, we mention that the results
of [46] imply that σ2 only needs to have a dimension on the
order of

ffiffiffi
d

p
. Furthermore, note that by perturbing ρ0

arbitrarily slightly, we can always ensure that HðρÞ <
Hðρ0Þ since we allow for arbitrarily small errors and von
Neumann entropy is continuous. We thus only need to
prove that we can do the transition ρ→ϵ¼0 χ̄ in the case
Hðρ0Þ > HðρÞ. To show this, we make use of a trick that
was used in recent work by Shiraishi and Sagawa [34]: We
denote by S ¼ S1 the system and by S2;…; Sn and A
subsystems of the first part of the catalyst. The Si all have
the same Hilbert space dimension as S, and A has Hilbert
space dimension n (see Fig. 2 for an illustration of the
structure of the catalyst). Then define

σ1 ¼
1

n

Xn
k¼1

ρ⊗k−1 ⊗ χ1;…;n−k ⊗ jkihkjA; ð18Þ

where χ1;…;i denotes the reduced density matrix of χ
consisting of the subsystems 1 to i and we define χ0
and ρ⊗0 to be the trivial state 1. We now apply the following
sequence of unitaries on ρ ⊗ σ1 (see Fig. 3):
(1) U ⊗ jnihnj þ 1 ⊗

P
n−1
k¼1 jkihkj, with U the unitary

FIG. 2. The structure of the constructed catalyst C: It contains
subsystems S2;…; Sn, which are copies of the target system S
together with an auxiliary system A of dimension n as well as a
catalytic source of randomness R. The dashed lines indicate
possible correlations. The source of randomness is utilized to
dilate the decoherence channelDρ0 on S in such a way that it does
not become correlated to the systems S2;…; Sn and A in the
process.
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from Lemma 5, (2) the cyclic shift of subsystems Si → Siþ1

with Sn → S1, and (3) the cyclic shift on A, acting as jii →
jiþ 1i with jnþ 1i ¼ j1i.
After the three steps, the catalyst is back to its initial

state. The state on the system, on the other hand, is given by
χ̄ and, after applying the dephasing map using the system
R, we find

D

�
1

n

Xn
k¼1

Dρ0 ½χk�; ρ0
�

≤
1

n

Xn
k¼1

DðDρ0 ½χk�; ρ0Þ ≤ ϵ

by the triangle inequality and Lemma 5.
The classical case.—As mentioned above, we can also

formulate the classical version of Theorem 2. To do that, we
can define a catalytic transition p→ϵ p0 between two
probability vectors p; p0 ∈ Rd as in the quantum case,
but with the catalysts’ density matrix replaced by a further
probability vector q ∈ RdC and the unitary U replaced by a
permutation acting on the canonical basis vectors of
Rd ⊗ RdC . The corresponding theorem, which is fully
proven in the Supplemental Material [35], can then be
stated as follows:
Theorem 7.—Let p; p0 ∈ Rd be two probability vectors

with Shannon entropies HðpÞ and Hðp0Þ, respectively. The
following are equivalent: (1) For all ϵ > 0, we have
p→ϵ p0. (2) HðpÞ ≤ Hðp0Þ.
Let me briefly comment on the main difference in the

proof as compared to the quantum case: The essential
construction of the catalyst is quite similar to the quantum
case, however, clearly we cannot make use of the Schur-
Horn theorem, since we do not have access to unitary
operations. The proof therefore proceeds by building into
the catalyst a source of randomness, which instead of being
used to dephase the system, is already correlated with the
first part of the catalyst S2;…; SnA from the beginning and
can be used to implement the transition p⊗n →ε¼0 p0ϵ;n by a
random permutation in the case that the auxiliary system A
is in state n. This source of randomness, in general, needs to
have a dimension on the order of dn in contrast to the
quantum case, which only requires a dimension on the
order of

ffiffiffi
d

p
.

Conclusion and open problems.—We have seen that von
Neumann and Shannon entropy uniquely characterize state
transitions that allow for the use of a catalyst but are

otherwise reversible. There are several natural open prob-
lems left for future work: First, in Ref. [22], an exact form
of the quantum catalytic entropy conjecture was conjec-
tured, where no error is allowed in the transition from ρ to
ρ0 at the expense of the additional constraint that the rank of
ρ0 has to be at least as large as that of ρ. This form of the
conjecture seems much more difficult to prove and prob-
ably requires methods that go beyond standard typicality
results (which always yield asymptotic statements with
vanishingly small, but finite error). A second open problem
is to investigate whether a similar result also holds for other
standard entropic quantities, such as mutual information
or relative entropy. Finally, it will be worthwhile to explore
the consequences of the given results for applications.
Some further immediate applications of an affirmative
resolution of the catalytic entropy conjecture in the context
of (quantum) thermodynamics have been explored in
Refs. [22,24], but more applications can be expected. In
particular, it would be interesting to see whether there are
useful applications in the context of (potentially entangle-
ment-assisted) communication scenarios.
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quantum result can be transferred to the classical setting.
I would further like to thank Joe Renes for pointing me to
Ref. [45]. This research was supported by the Swiss
National Science Foundation through the National
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and Technology (QSIT).

Note added.—Recently, Refs. [47,48] have shown similar
single-shot characterizations of standard entropic quantities
in the context of quantum teleportation and quantum
entanglement.
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