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Quantifying and verifying the control level in preparing a quantum state are central challenges in
building quantum devices. The quantum state is characterized from experimental measurements, using a
procedure known as tomography, which requires a vast number of resources. However, tomography for a
quantum device with temporal processing, which is fundamentally different from standard tomography, has
not been formulated. We develop a practical and approximate tomography method using a recurrent
machine learning framework for this intriguing situation. The method is based on repeated quantum
interactions between a system called quantum reservoir with a stream of quantum states. Measurement data
from the reservoir are connected to a linear readout to train a recurrent relation between quantum channels
applied to the input stream. We demonstrate our algorithms for representative quantum learning tasks,
followed by the proposal of a quantum memory capacity to evaluate the temporal processing ability of near-
term quantum devices.
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Introduction.—The impressive progress in realizing
quantum-enhanced technologies places a demand on the
characterization and validation of quantum hardware. One
of the most quintessential parts of building quantum
devices is quantum process tomography (QPT), which is
used in verifying quantum devices via the reconstruction of
an unknown quantum channel from measurement data
[1,2]. Standard QPT approaches, which have been focused
recently on small system size [3–7], assume the quantum
device processes input states separately in a time-indepen-
dent manner. In the envisioned picture of quantum time-
series processing, the quantum device may output the states
in a sequence where the current output depends on the past
inputs and outputs. For example, the quantum device may
generate temporal and input-dependent noise or fluctua-
tions, which may have effects on the output states [8,9].
Moreover, optical quantum states defined in temporal
modes can be manipulated in a time-dependent and
input-dependent manner using nonlinear optical processes
[10,11]. Performing tomography for such devices differs
from standard QPT, because the memory effects need to be
taken into account.
Given a sequence of quantum states β1; β2;… in a DA-

dimensional Hilbert space, a quantum device processes this
sequence via a temporal map F to output quantum states
F ðβ1Þ;F ðβ2Þ;… in a DB-dimensional Hilbert space with a
temporal dependency behavior: F ðβnÞ only depends on a
finite input history. An intriguing example is the temporal
depolarizing channel F ðβnÞ ¼ pnðI=DÞ þ ð1 − pnÞβn,
which replaces βn with a completely mixed state I=D with
probability pn and leaves the state untouched otherwise
(DA ¼ DB ¼ D for notational simplicity). The temporal

dependency can be established if pn depends on the recent
inputs. As similar to the model of quantum channels with
memory [12,13], we model F via a stream of quantum
channels fΩng that applies to fβng and introduces the
correlations between outputs. F can be considered as a
coherent superposition or a convex mixture of channels at
different times [Fig. 1(a)]. The output of Ωn is independent
of future inputs; it is determined by finite input history and
past channels to make the temporal dependency in F . For
example, Ωn corresponds to the experimental studies on
quantum processors where the dynamics of decoherence
effects act as time-varying quantum channels [9,14–18].
The effect of previous quantum inputs to the output has also
been demonstrated experimentally for optical fiber chan-
nels [19,20]. Here, F envisions a typical case in the future
realization of quantum communication and quantum inter-
net [21–23] where quantum data can be transmitted via
time-dependent and delayed channels.
In this Letter, we propose a supervised learning frame-

work to perform the approximate tomography of F . A
naive approach is to perform state tomography ofF ðβnÞ for
every n. This requires many repetition experiments on
copies of F ðβnÞ and the inversion of a huge linear system
for every n [24]. Our idea is to simplify the experimental
protocol and reduce the implementation cost under the
assumption of the temporal dependency in F . We assume
that it is possible to perform state tomography at some time
steps as F ðβ1Þ;…;F ðβLÞ. We consider a quantum system
S, called a quantum reservoir (QR), interacting with the
input stream belonging to an auxiliary system E. Each βn
interacts for a certain time with S before being replaced by
another one. Between two consecutive interactions by βn
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and βnþ1, the QR’s internal evolution is described by a
completely positive and trace-preserving (CPTP) map Lβn
whose role is to effectively transfer the information of βn
from E into S. With an effective setting of these CPTP
maps, the QR’s state after applying Lβn will depend more
on the recent past inputs than distant past inputs. This
scheme ensures the fading memory property [50], which is
the ability to retain information about recent inputs for
proper learning of functions of the past inputs. Therefore,
the results of measurements in S can be used as high-
dimensional quantum features to train a regression model to
output density matrices that approximate F ðβ1Þ;…;F ðβLÞ
[Fig. 1(b)]. After this procedure, we are able to reconstruct
F ðβnÞ for n > L from the trained parameters by perform-
ing a single measurement protocol in S.
Our framework is a quantum extension of classical

reservoir computing (RC) to perform quantum tasks
(Sec. I A-B in the Supplemental Material [24]). The crucial
principle of RC is to represent the input sequence by
feeding the input into a dynamical system, called the
reservoir, to encode all relevant nonlinear dynamics in
high-dimensional trajectories [51–54]. Our proposal
exploits quantum dynamics as a reservoir in the time-series
processing of quantum data. This idea develops the initial
proposal of harnessing disordered quantum dynamics for
machine learning with classical time-series data [55–57].
While the RC approaches in tomography tasks focused on a
static quantum state [58–60], our approach can process
time-dependent quantum states. We further propose the
concept of quantum memory capacity to uncover the
temporal processing ability of near-term quantum devices.
Model.—Assume that the initial state of the coupled

system ðS; EÞ is a product state ϱ ¼ ρ ⊗ β, where ρ and β
are the state of S and E, respectively. The coupled system is
evolved under a unitary evolution U and the state ρ of S is
transformed via the CPTP reduced dynamics map Lβ,
where LβðρÞ ¼ TrE ½Uðρ ⊗ βÞU†�. The successive inter-
actions are described as

ρn ¼ Lβnðρn−1Þ ¼ TrE ½Uðρn−1 ⊗ βnÞU†�; ð1Þ

where ρn is the state of S for the nth interaction. We
measure local observables O1;…; OK on ρn to obtain a
high-dimensional feature vector called reservoir state xn.
The kth element in xn can be calculated as xnk ¼
Tr½Okρn� ¼ hOkiρn , which is the expectation of the meas-
urement result viaOk. Between two inputs,M cycles of the
unitary evolution are processed and each of them is
followed by measurements. M is called the measurement
multiplexity, thus we obtain MK elements in xn.
In the training stage, we are given an input sequence

fβ1;…; βLg and the target sequence fŷ1;…; ŷLg, where ŷk
is the real vector form to stack the real and imaginary
elements of F ðβkÞ. Our framework includes a readout map
h, which is simply taken as a linear combination of the
reservoir states as yn ¼ hðxnÞ ¼ w⊤xn. Here, w is the
parameter to be optimized by minimizing the mean-square
error between yn and ŷn over n ¼ 1;…; L. In the evaluation
stage, we are given an input sequence fβLþ1;…; βLþTg
with the target fσ̂Lþ1;…; σ̂LþTg, where σ̂i ¼ F ðβiÞ. The
reconstructed output sequence is fyLþ1;…; yLþTg, which is
rearranged in the matrix form fσLþ1;…; σLþTg [61]. Since
targets are density matrices, we use the fidelity Fðρ; σÞ ¼
Tr½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

σ
p

ρ
ffiffiffi

σ
pp

� to estimate the reconstruction error. In error-
free tomography, F ¼ 1, and F < 1 otherwise. We calcu-
late the root mean square of fidelities in the evaluation stage

as RMSF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=TÞPi¼LþT
i¼Lþ1 F

2ðσ̂i; σiÞ
q

.

The reservoir’s response to the same input sequence may
differ with different initial states of the reservoir and may
result in the loss of reproducibility in the temporal
processing. To prevent this effect, the time evolution of
the reservoir must mostly depend on the input sequence
after enough transient time. This property is known as the
echo state property [51] in classical RC or the quantum
echo state property (QESP) in quantum RC [63,64] to
ensure the fading memory. Based on the spectrum of

FIG. 1. Our framework can learn the tomography of a device that is supposed to implement an unknown temporal quantum map F ; or
emulate a predefined F . (a) A stream of quantum channels fΩng applies to the input stream fβng where each channel’s output is
determined by finite input history and past channels. The device’s output is a function of input history such as a coherent superposition
or a convex mixture of channels. (b) Our framework consists of a quantum reservoir S interacting with fβng with memory effects. The
reservoir’s internal state is evolved via CPTP maps Lβn , which transfer the information from the input states to the reservoir.
Measurement results in S are used in a readout layer to reconstruct F .
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reduced dynamics maps, we can evaluate the QESP time-
scale, which indicates the transient time to forget the QR’s
initial state before learning (Sec. II in the Supplemental
Material [24]).
Results.—We present concrete applications of learning

temporal tomography. We consider ðS; EÞ as a closed
system of the transverse field Ising model with the unitary
U ¼ expðiτHÞ, whereH ¼ P

N
i>j¼1 Ji;jŝ

x
i ŝ

x
j þ B

P

N
j¼1 ŝ

z
j is

unchanged during interaction time τ. Here, B is the natural
frequency and ŝγj (γ ∈ fx; y; zg) are the Pauli operators
measuring the qubit j along the γ direction. We consider the
power-law decaying for Jij ¼ Jji − jj−α=NðαÞ with an
interaction strength J, power coefficient α (0 < α < 3),
and NðαÞ ¼ P

i>j ji − jj−α=ðN − 1Þ [65–67]. E includes
the first Ne qubits where the remaining Nm ¼ N − Ne
qubits form the reservoir S.
In our demonstrations, the number of observables is set

to K ¼ Nm if we select observables as spin projections ŝzj
over the z axis for all j, and to K ¼ NmðNm þ 1Þ=2 if we
further select observables as two-spin correlations ŝzi ŝ

z
j for

all i < j. We consider the time-dependent depolarizing
quantum channel ΩnðβÞ ¼ pnðI=DÞ þ ð1 − pnÞβ. We
introduce a temporal dependency in Ωn by formulating
pn as the rth-order nonlinear sequence: pn ¼ κpn−1þ
ηpn−1ð

P

r−1
j¼0 pn−j−1Þ þ γun−rþ1un þ δ, where r ¼ 10, κ ¼

0.3, η ¼ 0.04, γ ¼ 1.5, and δ ¼ 0.1. Here, fung is consid-
ered depending on fβng. It is randomly generated with the
same random seed used to generate fβng [68]. The QR can
encode fβng to reconstruct the output states, including the
reconstruction of the nonlinear sequence fpng. This
reconstruction is possible since observables in the QR
become nonlinear functions of the input history due to the
mixing of higher-order correlations in the quantum-chaotic
dynamics.
We first considerF as a quantum simple moving average

filter F ðβnÞ ¼ ½1=ðdþ 1Þ�Pd
i¼0Ωn−iðβn−iÞ [Fig. 2(a)] or a

delayed depolarizing map F ðβnÞ ¼ Ωn−dðβn−dÞ [Fig. 2(b)]
for a delay d ≥ 0. We refer to Sec. V B-C in the
Supplemental Material [24] for tomography of coherent

superposition of channels in times and temporal entanglers.
The QR must memorize the previous inputs and learn
the properties of previous channels. We set d ¼ 5,
K ¼ Nm ¼ 5, Ne ¼ 1, and M ¼ 5. Other model parame-
ters are α ¼ 1.0, J=B ¼ 1.0, and the normalized time τB ¼
2.6 [Fig. 2(a)] and τB ¼ 2.0 [Fig. 2(b)]. The number of
time steps used in the initial transients, training, and
evaluation stages are 500, 500, and 200, respectively. At
each time point, the density matrix is represented as a 2D2-
dimensional vector (D ¼ 2Ne) by stacking the real and
imaginary parts. In Fig. 2(a), the inputs jump to a new
random quantum state every 20 time steps, thus introducing
temporal dependencies between inputs. Alternately, we
consider a sequence of i.i.d. random inputs in Fig. 2(b).
The target sequences (middle panels in Fig. 2) in the
evaluation stage can be almost perfectly reconstructed since
the RMSF values are above 98% (bottom panels).
Next, we investigate the dependency of the task’s

performance on the QR’s parameters. Figure 3 illustrates
the tomography errors (1.0—RMSF) according to τB in the
reconstruction of F ðβnÞ ¼ Ωn−1ðβn−1Þ at Ne ¼ 2 and
Nm ¼ 4, 5 qubits. The transients, training, and evaluation
time steps are 1000, 3000, and 1000, respectively. The
errors are averaged over 10 different runs with random
trials of the input sequence and initial state. The errors
reduce quickly at low values of τB and then settle to the
stable lower values. Table I presents the average errors
along with their standard deviations at τB ¼ 10.0 and
M ¼ 5. Particularly, with Nm ¼ 5 and K ¼ 15, the errors
are lower than 1%, 4%, 6%, and 8% for Ne ¼ 1, 2, 3, and 4

(a) (b)

FIG. 2. Temporal tomography for (a) the quantum simple moving average filter and (b) the delayed depolarizing map with d ¼ 5,
Nm ¼ 5, Ne ¼ 1, α ¼ 1.0, J=B ¼ 1.0, and τB ¼ 2.6 [for (a)] and τB ¼ 2.0 [for (b)]. At each time point, the density matrix is vectorized
by stacking the real and imaginary parts, where the range of values is indicated in the color bars.

FIG. 3. Tomography errors according to τB for F ðβnÞ ¼
Ωn−1ðβn−1Þ with α ¼ 1.0 and J=B ¼ 1.0.
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qubits, respectively. We further compare our method with a
classical baseline method, in which we assume that a full
tomography of input states can be obtained. Instead of
using measurements, the reservoir state xn is constructed
directly from βn by stacking the real and imaginary parts in
the corresponding density matrix to construct the vector
form. Table I shows that our method outperforms the
classical baseline, which does not have memory effects.
We further investigate the short-term memory (STM) of

the QR via the delay-reconstruction task F ðβnÞ ¼ βn−d.
The STM in the classical context is defined via the
coefficient of determination to measure how much variance
of the delay inputs can be recovered from outputs [70].
Since the input and output of our framework are density
matrices, we define the d-delay STM of the QR by the
squared distance correlation [71] between the output fσng
and the target fσ̂ng ¼ fβn−dg:

R2ðdÞ ¼ V2ðfσng; fσ̂ngÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðfσng; fσngÞV2ðfσ̂ng; fσ̂ngÞ
p : ð2Þ

Here, V2 represents the squared distance covariance of two
random sequences of density matrices [24]. R2ðdÞ is
between 0 and 1, and it represents the QR’s ability at
the input βn to reconstruct the previous input βn−d. The
behavior of R2ðdÞ is indicated by the forgetting curve,
which approaches to a small value for large values of d,
thus realizing the STM. We then define the quantum
memory capacity, QMC ¼ P∞

d¼0R
2ðdÞ, to measure how

much information of the delay input states can be recovered
from output states, summed over all delays. If the value of
QMC increases, so does the duration of quantum inputs that
can be memorized via the QR. Quantifying QMC provides
insights into the ability of the QR to reconstruct a temporal
function of quantum inputs.
Figure 4(a) shows QMC as a function of τB broken down

in values of d (0 ≤ d ≤ 7) with the model parameters α ¼ 1,
J=B ¼ 1.0,K ¼ Nm ¼ 4,Ne ¼ 2, andM ¼ 1 (other results
in Sec. IV in the Supplemental Material [24]). R2ðdÞ is
averaged over different runs with 10 random trials of the
initial state and input sequence. The total

P

d¼7
d¼0R

2ðdÞ
increases and obtains the peak value at the onset of the
dynamical transition region (1.5 < τB < 2.5) of the reduced

dynamics map Lβ [Fig. S2(a) in the Supplemental Material
[24] ]. We further examine the relation between QMC and
other model parameters in Fig. 4(b), which displays the
averageQMC (calculated until dmax ¼ 10) as the function of
α and J=B at τB ¼ 10.0. Interestingly, QMC achieves
highest values in the region 0.1 < J=B < 0.2, which is
referred to the dynamical transition in Figs. S3 and S6 in the
Supplemental Material [24]. These observations can be
explained by the difference in the eigenvalues’ distribution
of Lβ [Figs. S2(a) and S3 in the Supplemental Material
[24] ]. The regime with eigenvalues concentrated near the
border of the unit disk leads toward a unitary behavior.
Therefore, only a little information of the input state β is
remained after applying Lβ, which is unfavorable on
temporal learning tasks. In contrast, the regime with eigen-
values concentrated near the center of the unit disk guar-
antees enough information in the input states to be entangled
with the QR. Here, the dynamics becomes ergodic and the
local observables become functions of a finite number of
past inputs. We anticipate that QMC builds up first as
the dynamics moves from more unitary to more ergodic
regime and obtains the peak at the transition between these
regimes [72].
Conclusion and discussion.—We formulate and propose

the general framework for learning tomography of temporal
quantum maps acting on quantum data. We establish the
concept of quantum memory capacity, which opens oppor-
tunities in developing the theoretical magnitude on the
quantum time-series processing [77].
The measurement protocol on the reservoir may lead to

the effect of backaction, which is the problem of changes in
quantum states due to measurement. Each physical imple-
mentation can have measures that may successfully work
around this problem [78,79]. One can consider weak
measurements on multiple copies of the same systems,
such as a huge ensemble of identical molecules in a solid
[55,78]. We can explore the implementation based on ion
traps since it is possible to experimentally exploit nontrivial

TABLE I. Average and standard deviation (mean� sd) of the
tomography errors (%) for F ðβnÞ ¼ Ωn−1ðβn−1Þ of the baseline
and our method at τB ¼ 10.0 and M ¼ 5.

ðNm;KÞ Ne ¼ 1 Ne ¼ 2 Ne ¼ 3 Ne ¼ 4

(4,4) 0.9� 0.0 4.8� 0.1 8.0� 0.0 8.9� 0.1
(5,5) 0.9� 0.0 4.0� 0.1 7.6� 0.0 8.6� 0.1
(4,10) 0.9� 0.0 3.6� 0.1 6.4� 0.0 8.3� 0.1
(5,15) 0.9� 0.0 3.3� 0.0 5.6� 0.0 7.7� 0.0
Baseline 3.2� 0.1 9.2� 0.1 10.0� 0.1 10.2� 0.1

(a)

(b)

FIG. 4. (a) QMC broken down in delays d according to τBwith
Ne ¼ 2, Nm ¼ 4 with α ¼ 1.0 and J=B ¼ 1.0. (b) The color map
of QMC as the function of α and J=B at τB ¼ 10.0.
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degrees of freedom with the measurements of the spin
projections and correlations [80,81] [82].
To perform tomography of the temporal quantum map

depending on long distant past inputs, we need to increase
the quantum memory capacity of the reservoir, which can
be a bottleneck with more scale of resources such as qubits,
observables, and measurements. Therefore, it can be help-
ful in the resource design if we can quantify in advance the
required information processing ability of a temporal
quantum map, such as how far and what combinations
of the past inputs are processed in this map. This directly
relates to the information processing framework in input-
driven dynamical systems [84,85] but presents further
challenges in the quantum context.
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