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We give evidence that a population of pure contrarian globally coupled D-dimensional Kuramoto
oscillators reaches a collective synchronous state when the interplay between the units goes beyond the
limit of pairwise interactions. Namely, we will show that the presence of higher-order interactions may
induce the appearance of a coherent state even when the oscillators are coupled negatively to the mean field.
An exact solution for the description of the microscopic dynamics for forward and backward transitions is
provided, which entails imperfect symmetry breaking of the population into a frequency-locked state
featuring two clusters of different instantaneous phases. Our results contribute to a better understanding of
the powerful potential of group interactions entailing multidimensional choices and novel dynamical states
in many circumstances, such as in social systems.
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When Kuramoto introduced his model of globally
coupled phase oscillators [1,2], he certainly could have
hardly fathomed that it would have acquired such a broad
applicability over the decades [3–9] to systems of physical
interest, such as Josephson junctions [10,11], laser arrays
[12–14], oscillator glass [15,16], and charge density waves
[17]. The model became soon a paradigm for the study of
synchronization, i.e., the emergent property through which
a system forms a collective, coherent, rhythm [3,8,18] via
the interaction of its oscillatory units, which has been the
object of a wide range of research in physics, biology, and
engineering [19–21]. In the Kuramoto model, a necessary
condition for synchronization is to have a rigorously non-
negligible fraction (usually larger than a finite threshold) of
oscillators which are acting as conformists, i.e., which are
featuring a strictly positive coupling strength to the mean
field. The emergence of order for repulsive strengths has
indeed been observed so far only in specific, local, coupling
arrangements [22,23].
In social science, various generalizations of the

Kuramoto model were proposed for the study, for instance,
of human crowd behavior during clapping [24,25] and
crossing bridges [26,27] and of human decision making, in
general. The inclusion of conformists and contrarians as
positively and negatively coupled individuals to the mean

field captures well the essential dichotomy of many social
interactions and their relation to whatever the prevailing
opinion might be [28,29]. It was also argued that the
continuous spectrum of opinions as points on a circle
reflect the political reality better than the traditionally
considered linear continuum from the left to the right wing
]30 ]. Applications to social interactions of the Kuramoto

model have not received, however, as much attention as it
would have deserved. This may be due to two fundamental
limitations of the original model. In the first place, social
interactions typically unfold in more than two dimensions,
simply because the spectrum of behavioral choices often
goes beyond a circle representation. It has recently been
noted that the quest for moral behavior in an evolutionary
setting, for example, may entail choosing between many
different strategies, all of which have highly nonlinear
consequence for the individual and the social network as a
whole [31,32]. Such a decision space, thus, surely requires
more than a circle to be completely mapped out. And,
second, social interactions inherently entail groups that are
not accurately described by pairwise links in traditional
oscillator networks [33]. Cooperation in large groups of
unrelated individuals, for example, distinguishes us most
from other mammals, and it is one of the central pillars of
our evolutionary success [34,35]. But classical social
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networks with only pairwise links simply do not provide a
unique procedure for defining a group [36].
Aiming to overcome these limitations, in this Letter, we

consider a D-dimensional Kuramoto model with one- and
two-simplex interactions and which includes both con-
formists and contrarians as positively and negatively
coupled individuals to the mean field to capture the fact
that some individuals—the conformists—prefer to go with
the mainstream, while others—the contrarians—prefer to
oppose it. We will show that these generalizations allow us
to retain full analytical tractability of the model while also
yielding fundamentally novel behavior. Notably, in addi-
tion to a rich plethora of behavior previously associated
with various Kuramoto models [37–42], such as mono- and
multistability, spontaneous symmetry breaking, and explo-
sive (i.e., discontinuous) transitions to synchronization, we
give evidence that synchronization may occur also in the
complete absence of conformists, a result which is inher-
ently prohibited when only pairwise interactions take place
in the ensemble. Thus, even if everybody contests the
prevailing attitude, consensus is possible due to higher-
order structures in the population.
Let us then start by considering an ensemble of globally

coupled N oscillators satisfying

_θi ¼ ωi þ
λ1
N

XN

j¼1

sinðθj − θiÞ

þ λ2
2N2

XN

j¼1

XN

k¼1

sinðθj þ θk − 2θiÞ; ð1Þ

where θi is the phase and ωi the natural frequency of each
oscillator i (i ¼ 1; 2;…; N), while λ1 and λ2 are two real
parameters accounting for the coupling strengths of
pairwise and triadwise interactions, respectively, as sche-
matically shown in Fig. 1(a). Now, one can consider the

unit vector σi ¼ ½cosðθiÞ; sinðθiÞ� and the antisymmetric
matrix

Wi ¼
�

0 ωi

−ωi 0

�
:

With the help of a few trigonometric relationships [which
are schematically reported in Fig. 1(b)] and after denoting
by ρ the mean vector of all σi (i.e., ρ ¼ ð1=NÞPN

i¼1 σi),
Eq. (1) can be rewritten as

_σi¼Wiσiþλ1½ρ−ðρ ·σiÞσi�þλ2ðρ ·σiÞ½ρ−ðρ ·σiÞσi�: ð2Þ

In fact, there is no reason for limiting Eq. (2) to the
dynamics of two-dimensional vectors. On the contrary, the
same equation can be adopted to describe the evolution of
D-dimensional vectors σi (of norm one) whose trajectories
lie on a (D − 1)-dimensional unit sphere SD−1. In the
special case of λ1 ¼ λ2 ¼ 0 equal to zero (i.e., where there
are no interactions among the oscillators), σi rotates
independently along some trajectory on SD−1 dictated by
a real antisymmetric matrix Wi ∈ RD×D which, in what
follows, is independently drawn at random for each node i.
Specifically, each upper triangular element of Wi is
sampled from a Gaussian distribution N ð0; 1Þ, and the
lower triangular elements are accordingly fixed to makeWi
antisymmetric.
For D ¼ 2 and D ¼ 3, Eq. (2) admits a rigorous

analytical treatment, which ultimately yields a self-
consistent equation for the order parameter R≡ hjρjiT
(with h…iT indicating time average over a sufficiently
long time span T and j…j indicating the norm). Such a self-
consistent equation allows, on its turn, the computation of
the stationary points (and of their stability) for all values of
λ1 and λ2. The interested reader can find the complete
details of the treatment in Supplemental Material [43]. On
the other hand, we performed large-scale simulations of
Eq. (2), at D ¼ 2 and D ¼ 3, in an ensemble of N ¼ 5000
oscillators, by the use of a fourth-order Runge-Kutta
algorithm with integration time h ¼ 10−3. In our simula-
tions, we monitored both the forward and the backward
transition to synchronization. In the forward (backward)
transition, the system is initialized in the fully incoherent
(fully coherent) state, which corresponds to Rðt ¼ 0Þ ∼ 0
[Rðt ¼ 0Þ ¼ 1], and, after a suitable transient time, the
asymptotic state of the order parameter R is calculated. In
practice, this is realized by selecting a random unitary
vector eD ∈ RD and letting each oscillator σi be initially
equal to eD with probability 0 ≤ μ ≤ 1, while setting
σiðt ¼ 0Þ ¼ −eD with probability 1 − μ. Then, the case
μ ¼ 1 (μ ¼ 0.5) gives the proper initial conditions for
inspection of the backward (forward) transition to
synchronization.

(a) (b)

FIG. 1. (a) The setting of Eq. (2): D-dimensional oscillators are
represented by yellow circles, and they interact via pairwise and
triadwise interactions, with coupling strengths, respectively,
given by λ1 and λ2. (b) D ¼ 2. The various trigonometric
relationships which allow one to transform of the classical
Kuramoto model [Eq. (1)] into Eq. (2).
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We start our discussion by reporting in Fig. 2 the
theoretical predictions [panels of the first row, obtained
by solving Eq. (26) of Supplemental Material [43] ] and the
numerical simulations [panels of the second row, obtained
from Eq. (2)], at D ¼ 2 (first two columns) and D ¼ 3
(second two columns), for R in the parameter plane (λ1, λ2).
Precisely, Figs. 2(a), 2(c), 2(e), and 2(g) refer to the
backward transition, whereas Figs. 2(b), 2(d), 2(f), and
2(h) report the results of the forward transition to
synchronization.
Figure 2 is informative on many relevant dynamical

scenarios supported by system (2). Some of these scenarios
confirm and actually extend findings already reported in the
literature: for instance, the fact that triadwise interactions
are detrimental for the forward transition, as in the limit of
λ1 ¼ 0 the forward transition disappears, and, in general,
the threshold in λ1 needed to produce the synchronous
state from incoherence increases monotonically with λ2
[see Figs. 2(b), 2(d), 2(f), and 2(h)] [44,45]. Some other
scenarios, instead, point to novel and relevant features of
the system, which certainly deserve more detailed inves-
tigations: for instance, the fact that, despite the simplicity of
the model, the simple combination between pure 1- and 2-
simplices makes it possible for the system to exhibit
monostability, bistability, and multistability regions, as
well as the fact that in the region of negative λ1 and
positive λ2 the system features an abrupt transition from the
fully synchronized state to the unsynchronized one.
Furthermore, the theoretical predictions (contained in
Ref. [43]) and the numerical results are in very good

agreement, and, therefore, the developed theory allows one
to unveil the origin of bistability in the Kuramoto model, as
reported also in various other settings and circumstances
[44,45].
But the most remarkable evidence that Fig. 2 is com-

municating is the presence of synchronization features in
the backward transition for negative values of the coupling
strengths. Precisely, for D ¼ 2 and D ¼ 3 the theory
[Figs. 2(a) and 2(c), respectively] predicts the emergence
of synchronization even when λ1 and λ2 are both negative, a
dynamical state which actually would be inherently pro-
hibited if the interplay among the elements were limited to
pairwise interactions. In other words, group interactions
lead to the emergence of synchronization, or in social terms
to the emergence of agreement, even if all individuals in the
network are contrarians; i.e., they are opposing the main-
stream at all times [28]. In simulations, we have observed
such a state only for D ¼ 2 (i.e., for the classical Kuramoto
model), whereas a detailed analysis of the D ¼ 3 case will
be reported elsewhere.
For a better visualization of this latter macroscopic and

generic effect, in the following we will fixD ¼ 2 and focus
on the microscopic details of the observed synchronization
of pure contrarians. To that purpose, in Fig. 3, we report
four time snapshots [Figs. 3(a)–3(d)] of the vectors
{σi ≡ expðiθiÞ} (with norms slightly adjusted around unity
for better visibility) in the plane (σx ¼ cos θ, σy ¼ sin θ),
together with the oscillators’ instantaneous phases
[Figs. 3(a1)–3(d1)] and frequencies [Figs. 3(a2)–3(d2)]
as functions of their natural frequency ωi. It is seen that the

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 2. Theoretical predictions [(a)–(d), calculated from Eq. (26) of Supplemental Material [43] ] and numerical simulations [(e)–(h),
calculated from Eq. (2)] for D ¼ 2 and D ¼ 3 of the order parameter R (see the text for definitions) as a function of the coupling
constants λ1 and λ2. (a),(c),(e),(g) refer to the backward transition; (b),(d),(f),(h) refer to the forward transition. In (a)–(d), the values
around the line λ1 ¼ −λ2 of the quadrant defined by λ1 > 0 and λ2 < 0 are interpolated (see [43] for a full discussion on the theoretical
limitations occurring at λ1 ¼ −λ2 for the assessment of stability of the synchronous state). In each panel, the synchronized (incoherent)
state is represented by the red (blue) color, and the values of R are coded according to the vertical color bar reported at the rightmost of
the figure. Notice that, for a better representation of the results, a vertical logarithmic scale is adopted for jλ2j in the semiplane λ2 < 0.
See the main text for the details on the size and on the initialization of the system.
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system sets actually in a collective state: Starting from a
fully incoherent dynamics (λ1 ¼ −10, λ2 ¼ −102), where
the unit vectors are almost homogenously distributed
around the unit circle [Fig. 3(a)], with unlocked phases
[Fig. 3(a1)] and frequencies [Fig. 3(a2)], a progressive
increase in λ1 determines a symmetry-breaking scenario
wherein two groups of oscillators form [Figs. 3(b), 3(b1),
and 3(b2), obtained at λ1 ¼ 0, λ2 ¼ −102] and grow in
correspondence with decreasing λ2, up to the final organi-
zation of the population of contrarians [Figs. 3(c), 3(c1),
and 3(c2), obtained for λ1 ¼ −10, λ2 ¼ −103]. In this latter
state, almost all oscillators display instantaneous phases
within either one of the two phase clusters, whose centers
of mass are located at positions ϕ̃ðtÞ and π − ϕ̃ðtÞ,
respectively [as can be seen in Fig. 3(c1)] and rotate
coherently with a fully locked frequency [see Fig. 3(c2)].
As a consequence of the two clusters, the value of the
order parameter remains small, yet distinguishable from
that corresponding to the fully incoherent dynamics.
Moreover, it is very interesting to notice that, while the
presence of only pairwise interactions would determine
the total destruction of such a state, when pairwise and
triadwise interactions are simultaneously present, positive
values of λ1 may actually enhance the dichotomic nature of
the state [see Figs. 3(d), 3(d1), and 3(d2)]. We refer the
interested reader to the discussion of our Supplemental
Material [43], where we prove that for D ¼ 2 and λ2 ¼ 0
(i.e., for the classical case of the Kuramoto model with only
pairwise interactions), if λ1 is negative, the only solution of
the self-consistent equation is R ¼ 0 (i.e., synchronization

of contrarians is prevented in this case), while the presence
of three-body interactions introduces a new solution of the
self-consistent equation (the observed new state) even for
λ1 < 0 and λ2 < 0.
Finally, we report that the emergence of such collective

state does not necessarily require an all-to-all configuration,
but, on the contrary, it can be observed also in sparser
connectivity structures. To this purpose, we set N ¼ 102

and simulate Eq. (1) for λ1 ¼ −10, λ2 ¼ −1000, starting
from an all-to-all configuration and initializing the phases
with μ ¼ 1. As a consequence, the system sets in the
collective state reported in Fig. 4(a). Then, every 50 time
steps, a fraction 1 − p of triangular interactions is randomly
removed from the double sum of the second term of the
right-hand side of Eq. (1). Figure 4(d) reports then the
behavior of R1 ¼ ð1=NÞkPN

j¼1 e
iθjk (red curve with

squares) and R2 ¼ ð1=NÞkPN
j¼1 e

2iθjk (blue curve with
circles) vs the fraction p of remaining triangles. It is clearly
seen that the new collective state is resilient up to the
removal of about 20% of triadwise interactions [see
Fig. 4(b)] and eventually disappears completely when
p ¼ 1, in full agreement with the rigorous result that a
population of pure contrarians is strictly prevented from
synchronizing in the limit of pairwise interactions.
In summary, we have reported, both analytically and

numerically, on the emergence of synchronization even
when λ1 and λ2 are both negative. In other words, group
interactions may lead to the emergence of synchronization,
or in social terms to the emergence of agreement, even if all
individuals in the network are contrarians, i.e., opposing the
mainstream at all times. Microscopically, we have shown

(a)

(a1) (b1)

(b2)

(d1)

(d2)

(a2)

(c1)

(c2)

(b)

(d)(c)

FIG. 3. The microscopic details behind the synchronization of
contrarians. (a)–(d) report (with blue dots) a time snapshot of the
set of vectors {σi ≡ expðiθiÞ} (for better visibility, the norms of
such vectors have been slightly adjusted around unity) in the plane
(σx ¼ cos θ, σy ¼ sin θ). The black arrow stands for the instanta-
neous order parameter vector ρ≡P

N
i¼1 expðiθiÞ. (a) λ1 ¼ −10,

λ2 ¼ −102; (b) λ1 ¼ 0, λ2 ¼ −102; (c) λ1 ¼ −10, λ2 ¼ −103;
(d) λ1 ¼ 10, λ2 ¼ −103. In all cases, μ ¼ 1 for the initialization of
the system. (a1)–(d1) [(a2)–(d2)] report the instantaneous phase θi
(the instantaneous frequency _θi) for each oscillator i in the
ensemble, as a function of the oscillator’s natural frequency ωi.

(a) (b) (c)

(d)

FIG. 4. The resilience of the new state in sparser structures.
(d) reports R1 (red curve with squares) and R2 (blue curve with
circles) vs the fraction p of remaining triangles (see the text for
definitions). (a)–(c) show snapshots of the corresponding states of
the oscillators in the plane (σx ¼ cos θ, σy ¼ sin θ) for three
values of p (p ¼ 1, 0.84, 0) marked by vertical dashed lines in (d)
and colored with the same colors. The same stipulations for the
phase representation as in the caption of Fig. 3.
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that this is due to imperfect symmetry breaking that splits
the population into two groups with different phases, but
with frequency synchrony in one.
Our research should find applicability in better under-

standing decision making in human groups, especially
where the decision space is multidimensional, such as in
evolutionary settings involving the provisioning of public
goods [35] or the emergence of moral behavior [32].
Swarming in three dimensions [46], in particular, where
making swift decisions play a key role even if not involving
humans, such as in fish schools or murmurations under
predation [47,48], might also benefit from the insights
reported in our research.
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[24] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L.
Barabási, The sound of many hands clapping, Nature
(London) 403, 849 (2000).
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