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Living many-body systems often exhibit scale-free collective behavior reminiscent of thermal critical
phenomena. But their mutual interactions are inevitably retarded due to information processing and delayed
actuation. We numerically investigate the consequences for the finite-size scaling in the Vicsek model of
motile active matter. A growing delay time initially facilitates but ultimately impedes collective ordering
and turns the dynamical scaling from diffusive to ballistic. It provides an alternative explanation of swarm
traits previously attributed to inertia.
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Interacting assemblies of active elements ranging from
neural networks in the brain to forest fires and bird flocks
can exhibit scale-free behavior [1–4]. This might be
indicative of an underlying powerful physical ordering
principle overwriting their inherent complexity. Finite-size
scaling theory [5] associates such behavior with a corre-
lation length exceeding the system size and conjectured to
arise from a mechanism called self-organized criticality [6].
It is indeed an appealing idea that simple interaction rules,
when, e.g., individuals replicate actions of their neighbors,
can drive a nonequilibrium ensemble toward criticality.
Even though it does not generally seem to apply to both
natural systems [7,8] and their models [9–11], studying the
emergent finite-size scaling in natural assemblies is vital for
their prospective modeling in the spirit of nonequilibrium
many-body systems, as successful models should be
required to reproduce the observed scaling [10] and
correlations [12]. In this vein, the inertia spin model
[12] was proposed to overcome known deficiencies of
the classical Vicsek model (VM) [13] in comparison with
empirical data for natural swarms and flocks. Inspired by
observations of birds and insects [4], which cannot turn
instantaneously, it adds inertia to the navigation rules for
the individual motile spins and predicts dynamical scaling
with exponent z ¼ 1.5 for a small-particle-velocity
(“underdamped equilibrium”) regime and z ¼ 1.3 for a
large-velocity (“underdamped off-equilibrium”) regime
[14]. This brings the VM, with classical exponents z ¼ 2
and z ¼ 1.7, respectively, closer to the dynamical scaling
and time-correlation functions found in natural swarms of
moderate size (dynamical exponent z ≈ 1.1) [15,16].
However, for motile ensembles, physical inertia can have

quite similar effects as delayed reactions due to finite
speeds of information transfer processing, and actuation

[17–19]. Such traits are indeed ubiquitously found in
nature, from insects to birds, in various robotic systems
[20–22] and are also thought to cause traffic jams [23].
Recent experiments [24,25] with feedback-driven artificial
microswimmers [26] have moreover established their role
in the naturally overdamped microscopic world of active
Brownian particles such as bacteria, for which inertial
effects are negligible. Beyond oscillatory behavior, which
is also a common trait of inertial motion, time-delayed
interactions can give rise to multistability, instabilities, and
even chaos [19,27–29]. Conversely, intermediate time
delays may facilitate clustering compared with the classical
VM [28] and flocking in the Cucker–Smale model [30].
And recent indications that delay-dependent optimizations
play a role in artificial microswimmer assemblies [25] seem
reminiscentof theoptimumrun-and-tumble timesofbacteria
[31,32] or the improved localization achieved with feedback
cooling [33,34] or feedback-driving of robots [35].
In this Letter, we demonstrate that the classical VM [13]

with retarded reactions exhibits the same finite-size scaling
and time correlations near the ordering transition as the
inertia spin model [4]. This suggests that scaling and
correlations similar to natural swarms can be expected
for a wealth of systems with time-delayed interactions,
including overdamped Brownian particle assemblies. We
can also corroborate the observation that increasing delay
times may have a nonmonotonic effect on the stability of
coherent collective motion [28].
Model.—The (classical) VM [13] arguably is the sim-

plest model for motile active-particle assemblies, ranging
from bacteria to birds, and a central paradigm in the field of
motile active matter [36–39]. In each discrete time step, all
particles advance with the same constant speed v0. And
they instantaneously adapt their orientations to the previous
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average orientation of their neighbors within an interaction
sphere of radius R, up to some random error contributed by
a local noise term. The orientation is thus clearly an
overdamped variable, as it bears no inertia.
In the delay VM, depicted in Fig. S1 of the Supplemental

Material [40], particle i adapts at time t to the mean
orientation of all particles that had distance less than R
from its previous position, at time t − 1 − τ, with an integer-
valued time delay τ ≥ 0. The discrete time step and the
interaction radius R ¼ 1 serve as units of time and length,
respectively. The dynamics of the standard VM is recovered
for τ ¼ 0. The velocity vi and position ri of particle i in three
spatial dimensions (3D) thus obey the set of equations [13]

viðtþ 1Þ ¼ v0RαΘ
�
viðtÞ þ

X
j

nijðt − τÞvjðt − τÞ
�
; ð1Þ

riðtþ 1Þ ¼ riðtÞ þ viðtþ 1Þ: ð2Þ
The noise operator RαX randomly rotates its argument X
within a uniformly distributed solid angle 4πα centered
around X, and ΘðvÞ≡ v=jvj normalizes its argument. We
assume geometric interactions corresponding to the con-
nectivity matrix elements nijðtÞ ¼ 1 for i ≠ j if
rijðtÞ ¼ jriðtÞ − rjðtÞj < R, and nijðtÞ ¼ 0 otherwise.
We simulated the delay VM with fixed speed v0 ¼ 0.05

and noise strength α ¼ 0.45 inside a cube with size L3 and
periodic boundary conditions for six values of the particle
number N ¼ 2n, n ¼ 6;…; 11. In this setting, we repeated
the analysis performed in Refs. [15,49] for the static and
dynamic scaling and the correlation functions of the
standard VM, operating in its overdamped equilibrium
regime [14], for delay times τ ¼ 0;…; 20. As control
parameter, we prescribed the average nearest-neighbor
distance r1 between the individual particles by varying
L. Here, we present the main simulation results. Further
data, technical details, and some analytical discussion can
be found in the Supplemental Material [40].
The central object for our data analysis is the Fourier

transformed spatiotemporal correlation function (CF)

Cðk; tÞ ¼
�
1

N

XN
i;j

sin½krijðt; t0Þ�
krijðt; t0Þ

δv̂iðt0Þ · δv̂jðt0þ tÞ
�

ð3Þ

of the normalized velocity fluctuations [4,15,40]

δv̂i ¼
δviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N−1P
kδvk · δvk

p ; ð4Þ

where δvi ¼ vi −
P

k vk=N is the deviation of the velocity
of particle i from the average velocity, and rijðt0; tÞ ¼
jriðt0Þ − rjðtÞj is the distance between particles i and j at
times t and t0 < t. The average h…i is taken over t0 [40].
Static scaling.—At t ¼ 0, Cðk; 0Þ exhibits a global

maximum at k ¼ k⋆ ∼ 1=ξ, where ξ corresponds to the
correlation length. Assuming proportionality between

fluctuation and response, this value of the CF is interpreted
as a susceptibility χ ≡ Cðk�; 0Þ [4,15,40].
For given delay time τ and particle number N, the

susceptibility χ exhibits a maximum χ� ¼ χ�ðτ; NÞ as
a function of the nearest-neighbour distance at r�1 ¼
r�1ðτ; NÞ. The system is found to be ordered (large average
velocity) for r1 < r�1 and disordered (small averagevelocity)
otherwise.For agivenN, the susceptibilityχ� at the transition
decreases monotonically with growing τ and eventually
saturates [see Figs. 1(a) and 1(b) and, in the Supplemental
Material, Figs. S2 and S3 [40] ]. The equal-time orientation
correlations are thus generally reduced for retarded as
opposed to instantaneous interactions, which suggests that
the sensitivity to external perturbations decreases accord-
ingly. For sufficiently large τ and N, the derivative of the
susceptibility with respect to r1 abruptly increases at some
r1 < r�1; see thevertical dotted line atr1 ≈ 0.4 inFig. 1(b).No
such kink is observed for small τ [40]. For a given τ and large
enough N, the susceptibility in the vicinity of the ordering
transition [49] exhibits finite-size scaling according to
Ref. [50]:

r�1 ∼ rC þ N−1=ð3νÞ; ð5Þ

χ ∼ Nγ=ð3νÞ: ð6Þ

In other words, for any given τ, the limiting location rC ¼
r�1ðτ;∞Þ of the transition for large (infinite) particle numbers
and the critical exponents γ and ν of the susceptibility χ ∼
ðr�1 − rCÞ−γ and the correlation length ξ ∼ ðr�1 − rCÞ−ν,
respectively, can all be extrapolated from a data collapse
of the susceptibilities for different N. The procedure is
illustrated in Figs. 1(c) and 1(d). The resulting exponents
and rC exhibit strong dependencies on τ, which saturate as
τv0=R ≈ 1=2, when the advance during one delay time
becomes comparable to the interaction radius [Figs. 1(e)–
1(h)]. An analytical argument corroborates that a further
increase of τ should not significantly alter the qualitative
physical picture [40]. For a particle of characteristic size
2.5 mm traveling with velocity 1 meter per second with an
interaction radius of 4× body length (10 mm), the condition
τv0=R ¼ 1=2 impliesa timedelayof5ms,whicharenumbers
roughly in accord with data available for fruit flies [51–54].
Since the static critical exponents in the standard VM are

known to depend strongly on the density, speed, and
interaction radius [56], their absolute values are of limi-
ted interest. Rather, their trends and dependencies are
revealing. The critical nearest-neighbor distance rC in
Fig. 1(h), proportional to the critical density of the system,
exhibits a pronounced maximum at τv0=R ≈ 0.2, indicating
that a system with an intermediate delay time favors order
already at lower densities as compared with the system
without delay. This somewhat counterintuitive result is in
agreement with findings of Refs. [28,35] that intermediate
delays stabilize collective motion. For larger delay times,
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the critical nearest-neighbor distance rC drops sharply to a
value below that for the standard VM. A possible explan-
ation can be based on the decrease of the maximum
susceptibility with delay time, shown in Sec. S2 in the
Supplemental Material [40]. The susceptibility measures
both the sensitivity to destabilizing perturbations and the
ability to align in the flocking regime. The local maximum
in rC could thus originate from a trade-off between these
tendencies, the increased resistance to fluctuations domi-
nating at small τ and the waning alignment at large τ.
The exponents ν and γ also display local maxima, but at

somewhat larger τ. Their saturation values are much higher
than the respective critical exponents in all known univer-
sality classes, including the standard VM. To attribute the
observed finite-size scaling to a critical point in the infinite-
size limit according to the conventional scaling hypothesis
[57] would require an extraordinarily sharp divergence of
the correlation length and the susceptibility at criticality,
which is approached extraordinarily slowly with increasing
particle number N [see the solid lines in Figs. 1(a) and 1(b).
As detailed in Sec. S1 of the Supplemental Material [40],
we expect the observed scaling to hold whenever the
density is approximately homogeneous, as it is the case

for intermediate N. Then, also, the standard VM shows the
truly critical scaling of its incompressible variant [16,37],
while, for very large N, it exhibits large density fluctuations
leading to a discontinuous phase transition with microphase
separation.
Time correlation functions.—The time dependence of

the CFs [Eq. (3)] for the delay VM at the transition,
quantifying the temporal loss of orientational correlations
[4,15], is strongly influenced by the delay. Figure 2(a)
shows that the normalized CFs C̄ðtÞ≡ Cðk�; tÞ=Cðk�; 0Þ
acquire oscillations with period (τ þ 1) and an amplitude
increasing with τ. They reveal the transmission of orienta-
tional correlations over discrete time steps τ þ 1 and can be
understood analytically by a spin wave theory that accounts
for the delay [40]. In Fig. 2(d), we show that logarithms of
CFs for N ¼ 2n, n ¼ 8;…; 11, and τ ¼ 0 collapse onto the
master curve −t=τR upon rescaling time by the relaxation
times τR obtained from Eq. (S14) in the Supplemental
Material [40]. Figure 2(g) shows the corresponding increas-
ingly negative time derivatives for t → 0, indicating the
exponential loss of correlation in the standard VM [15].
Due to the delay-induced superimposed oscillations, the
initial slope of the CFs always steepens with increasing
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FIG. 1. Static finite-size scaling in the 3D delay VM. Each simulation departed from a random initial state and was evolved for a transient
period of 1500 time steps before measurements started. (a),(b) The susceptibilities χ ≡maxkCðk; 0Þ averaged over 11 trajectories of 104

time steps for N ¼ 64, 128, 256, 512, 1024, 2048 particles (from bottom to top) and delay times τ ¼ 0 [(a), standard VM] and τ ¼ 15 [(b),
τv0=R ¼ 0.75], respectively, over the mean nearest-neighbour distance r1. (c),(d) The data collapse achieved for N ≥ 256. (e)–(h) Box
plots [55] of the exponent ratio γ=ν, the individual exponents, and the extrapolated critical parameter rC for N → ∞, respectively, all for
delay times τ from 0 to 20. Broken dashed lines mark averages over the 11 realizations. The horizontal dotted lines depict the values
ν ≈ 0.75, γ ≈ 1.53, and rC ≈ 0.41 obtained for τ ¼ 0, where the model reduces to the standard VM, consistent with the data in Ref. [49]. In
(a) and (b), black squares mark susceptibility maxima χðr�1Þ and solid lines are computed using the finite-size scaling relation χ ∼ ðr�1 −
rCÞ−γ with parameters from (e)–(h). The vertical dotted line in (b) marks the abrupt changes in the slope of χ.
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delay time τ. In contrast, the overall decay flattens with τ,
as revealed by the upper envelopes C̄mðtÞ of C̄ðtÞ, in
Fig. 2(b). As intuitively expected, the delayed interactions
thus tend to increase the memory in the VM. The data
collapse of C̄mðt=τRÞ in Fig. 2 confirms the nonexponential
relaxation, while its slope in Fig. 2(h) still increases for
t → 0 (see Sec. S5 in the Supplemental Material [40] for an
approximate analytical result).
However, we note that the sampling rates used in

practical measurements may not always be sufficient to
resolve delay induced oscillations [40], which might more-
over have a tendency to be washed out by a natural
dispersion of the delay times. To account for undersam-
pling, Fig. 2(c) shows normalized CFs ĈðtÞ calculated from
particle positions that were (under-)sampled with frequency
1=ðτ þ 1Þ, i.e., we calculated the corresponding velocities
as viðtÞ ¼ ½riðtÞ − riðt − τ − 1Þ�=ðτ þ 1Þ. In Fig. S10 of the
Supplemental Material [40], we show that the under-
sampled CFs are independent of the sampling rate as long
as it is comparable to or smaller than 1=τ. The resulting CFs
are shown in Fig. 2(c). The exponential initial decay for the
vanishing delay time τ ¼ 0 is seen to increasingly flatten
with growing τ, as also corroborated by the data collapse in

Fig. 2(f). For v0τ=R≳ 1=2, the absolute slope j _̄CðtÞj starts
to decrease for t → 0 as shown in Fig. 2(i) and in Figs. S7
and S9 in the Supplemental Material [40]. The under-
sampled delay VM yields qualitatively the same relaxation
of orientational correlations as observed for natural swarms
[15]. It thus provides an alternative explanation for the data,
which were so far interpreted within the inertia spin model
[58]. The dynamics induced by a discrete time delay
appears to be more prone to developing oscillatory patterns,
such as the ones illustrated in Fig. 2(a), though.
Dynamical scaling.—The dynamical scaling hypothesis

[57] states that the relaxation time τR diverges with the
correlation length as τR ∼ ξz ∼ ðk�Þ−z, at a critical point.
Directly fitting the relation

log τRðNÞ ¼ −z log k�ðNÞ ð7Þ

for the relaxation times of C̄m and Ĉ as functions of time
delay τ yields the dynamical exponent z as depicted by
circles in Figs. 2(j) and 2(k), respectively. The figures also
show box plots [55] resulting from the best data collapse of
CFs C̄m and Ĉusing ðk�Þ−zwith z as a free parameter in place

FIG. 2. Dynamical scaling of the orientational correlations at the susceptibility maximum displayed in Fig. 1. (a) Normalized time-
correlation functions C̄ðtÞ for delays τ ¼ 0, 5, 20 and N ¼ 2048. (b) The upper envelopes C̄m of the curves in (a). (c) The correlation
functions ĈðtÞ calculated from trajectories (under)sampled with frequency 1=ðτ þ 1Þ for N ¼ 2048. (d)–(f) The normalized CFs C̄, C̄m,
and Ĉ collapse upon measuring time in units of the relaxation time τR for τ ¼ 0 (d) and τ ¼ 20 (e) and (f) and system sizes N ¼ 2n,
n ¼ 8;…; 11 (50 simulation runs for each system size). (g)–(i) The corresponding collapsed slopes. Box-plots [55] in (j) and (k) show
the dynamical exponent z obtained from collapsing the CFs C̄m and Ĉ by rescaling time as tξz. Examples of the corresponding collapses
are shown in Figs. S13 and S14 in the Supplemental Material [40]. The green circles are from linear fits to log τRðNÞ ¼ −z log k�ðNÞ for
all 50 datasets with 95% confidence intervals of the fits (dashed).
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of the relaxation time τR, itself. The exponents z obtained
from these two approaches nicely agree for each CF. While
the values for z obtained from the two alternative CFs differ,
they exhibit the same robust trend: a crossover from the
overdamped equilibrium to the underdamped off-equilib-
rium signature [14,40], i.e., from z ≈ 2 for τ ¼ 0 to about
z ≈ 1.1 for τv0=R ≈ 1 [59]. Our analysis thus suggests that
increasing the delay time drives the system further from
equilibrium as if one had effectively increased the particle
speed v0. Analytical arguments corroborate this, at least for
large τ (Sec. S6 in the Supplemental Material [40]). Our
results can therefore reconcile the standard VM predictions
with the observations for natural swarms.
Conclusion.—We analyzed the VM with retarded inter-

actions, as they are expected from natural delays between
sensing and reaction. It provides an alternative to the
rotational inertia hypothesis for reconciling the discrepan-
cies in the dynamical scaling and relaxation between the
standard VM and natural swarms [4,58]. While the
navigation of insects and other flying species is certainly
influenced both by inertia and time delay, our focus on
delay could help to better understand their relation to
feedback-driven robotic [35] or microparticle [24,25,60]
swarms. Especially in the latter, current experimental
techniques [26] allow inertial effects to be suppressed so
that only the unavoidable time delay remains. While our
analysis proves that the delay VM is compatible with finite-
size scaling for the investigated system sizes, it raises many
questions. Will larger systems exhibit a discontinuous
transition with a phase separation, as in the standard
VM? Will it mask the finite-size signatures of a continuous
phase transition for practically relevant particle numbers?
How does the phase diagram depend on the delay time? We
hope to address some of these questions in the future.
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