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We present micromagnetic simulations on resonant spin wave modes of magnetic Hopfions up to
15 GHz driven by external magnetic fields. A sharp transition is found around 66 mT coinciding with a
transition from Hopfions to magnetic torons. The modes exhibit characteristic amplitudes in frequency
space accompanied by unique localization patterns in real space and are found to be robust to damping
around topological features, particularly vortex lines in Hopfions and Bloch points in torons. The marked
differences in spin wave spectra between Hopfions, torons, and target skyrmions can serve as fingerprints in
future experimental validation studies of these novel 3D topological spin textures.
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Introduction.—Topological solitons, originally proposed
to explain quantized particles in continuous fields [1–3],
have recently seen significant attention in condensed matter
research, where they appear as stable configurations of
the magnetization field in ferromagnetic materials [4,5].
Magnetic skyrmions are prominent examples [6], which
exist in two-dimensional chiral magnets resulting from
a competition between symmetric exchange (Heisenberg)
interactions with antisymmetric exchange, i.e.,
Dzyaloshinski-Moriya interaction (DMI) [7,8]. Their topo-
logical protection makes them attractive candidates for
future high-density and low-power spintronic devices [9],
but their dynamical behavior is often impaired by topo-
logical Hall effects that can be attributed to a gyrovector
[10,11]. Recently, the generalization of magnetic sky-
rmions into the third dimension has opened a path towards
more complex and diverse topological solitons, including
rings, knots, and links. Recently, several new topological
spin structures have been observed including target sky-
rmions [12,13], skyrmion tubes [14], chiral bobbers [15],
vortex rings [16], and Hopfions [17]. Whereas the topo-
logical charge that characterizes magnetic skyrmions in
two dimensions is the winding number Nsk ¼ ∬ d2rm ·
½ð∂m=∂xÞ × ð∂m=∂yÞ� withm being the magnetization, the
corresponding three-dimensional topological solutions can
be classified by an additional topological invariant, the
Hopf number (QH). In real space this can be expressed as
QH ¼ − R

B · Ad3r with B being the emergent magnetic
field from the spin texture and A is the magnetic vector
potential [18].
The topological protection in three dimensions is analo-

gous to the process that stabilizes skyrmions in two
dimensions. Skyrmions cannot be smoothly unwound into
a uniformly magnetized state without passing through a
divergent singularity, so they are stable even when they are

not in the lowest energy state. Magnetic Hopfions take the
form of toroidal knots where each isosurface, the area of a
single direction of magnetization, is a loop. The Hopfion’s
topological invariant is its Hopf number QH, which is the
number of times these isosurfaces are linked [see Fig. 1(c)].
A Hopfion can therefore be considered as a twisted, closed
loop of skyrmion string, where the Hopf number is the
number of twists [19]. With the application of a static
magnetic field along the z axis, the Hopfion constricts in
diameter, until at a certain field value, it transforms to the
unlinked toron state. The toron is equivalent to a skyrmion
tube closed with two opposite Bloch points at the top and
bottom [Fig. 1(h)].
Hopfions are predicted to have complex dynamics

relevant for spintronic applications [20,21]. Previous com-
putational studies have investigated the dynamics of
Hopfions under spin transfer torque [22,23]. Because of
their vanishing gyrovector, and therefore vanishing sky-
rmion Hall effect, under the rigid-body approximation
Hopfions can move in a racetrack geometry without
deflection, however, they still exhibit complex tumbling
and breathing dynamics in three dimensions [23].
In addition to current-induced transport dynamics, spin

textures can also be excited by external oscillating fields.
The three-dimensional resonances of target skyrmions have
been precisely simulated [12], recent studies on skyrmion
tubes [24] showed mode-dependent spin wave propagation,
and three-dimensional resonance experiments with mag-
netic field microscopy revealed a complex spin wave
spectrum of magnetic “nanovolcanos” [25].
Here we present micromagnetic simulations of the

resonant dynamics of magnetic Hopfions confined in chiral
magnetic nanopillars up to 15 GHz as a function of external
magnetic fields and as a function of damping parameter. We
find that Hopfions have unique field-excited dynamics
distinct from target skyrmions and torons, which opens a
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path to discriminating between Hopfions and target sky-
rmions based on their breathing mode dynamics.
Simulation details.—To mimic an experimental scenario

[17] a stable Hopfion state was simulated in a disk of
chiral ferromagnetic material which is sandwiched between
two layers of material with high perpendicular magnetic
anisotropy (PMA) (see Fig. 1). The high PMA layers
enforce a uniform m ¼ ð0; 0; 1Þ boundary condition on the
top and bottom of the disk. Without the uniform boundary
condition, the Hopfion expands until it hits the surface and
breaks its linked isosurfaces, transforming into the related
target skyrmion state [5]. It has been shown that a range of
anisotropies can stabilize a bound Hopfion. For simplicity,

the simulations shown here employ a fixed spin approxi-
mation of the high PMA layer on the top and bottom of
the chiral disk. The geometry and material parameters are
based on previous theoretical investigations of Hopfions
confined in magnetic heterostructures [19,26].
The system was simulated using the MuMax3 GPU

accelerated micromagnetic simulator package [27].
Simulations were run in parallel on the Lawrencium
supercluster at Lawrence Berkeley National Laboratory
in Berkeley, CA.
The local energy density of the chiral disk is given by

E ¼ Að∇ ·mÞ2 þDm · ð∇ ×mÞ − μmsH ·m

− 1

2
msBdemag ·m;

where the exchange constant was chosen as A¼2.19 pJ=m,
the DMI constant D ¼ 0.395 mJ=m2, and the saturation
magnetization ms ¼ 384 kA=m. The geometrical dimen-
sions of the chiral disk were height h ¼ 90 nm and
diameter d ¼ 200 nm. The spins in the top and bottom
2 nm layers are fixed in the (0, 0, 1) direction. This specific
geometry based on material parameters is needed to
stabilize a Hopfion. The dimensions of the disk are set
by the chiral period of the material parameters L ¼
4πA=D ¼ 70 nm, which rescales the disk geometry in
units of L to h ¼ 1.28 L and d ¼ 2.86 L. These dimen-
sions allow the magnetization to rotate by 2π from top to
bottom of the Hopfion and by 4π across the diameter of the
Hopfion. The cell size was chosen to be 2 nm × 2 nm ×
2 nm for a total 450 000 cells per simulation. The demag-
netization energy, which helps to stabilize the Hopfion, is
included.
To simulate magnetization dynamics, MuMax3 numeri-

cally integrates the Landau-Lifshitz-Gilbert equation

_m ¼ −γm ×H þ αm × _m:

A range of damping parameters α ¼ f0.001; 0.1g was
used to explore the GHz spin wave spectrum of the system
and to determine where distinct spin resonances are
replaced at high damping by large displacement breathing
modes. This range of damping parameters explores the
robustness of the modes.
To excite spin wave resonances a pulsed magnetic field

was applied. The sinc function,HðtÞ ¼ Hmax½sinð2πωmaxtÞ=
2πωmaxt�, was used as the pulse because its Fourier transform
is a step function up to a maximum frequency ωmax, so it
excites an unbiased spin wave response from the Hopfion for
frequencies up toωmax [see Figs. 2(b) and 2(c)] The sinc pulse
ωmax frequency was 15 GHz with an amplitude of 5 mT. The
pulse is arbitrarily offset in time to peak at 0.67 ns. Low
damping (α ¼ 0.001) spin resonance simulations were run
for 20 ns with data taken every 17 ps to ensure a resolution
below the Nyquist frequency 1=2f.

FIG. 1. (a) Magnetization color map of a Hopfion at the z ¼ 0
plane. (b) Magnetization color map of Hopfion at the y ¼ 0 plane.
(c) Hopfion spin textures with linked magnetization isosurfaces.
The Hopf invariant or linking number, Q, is the number of times
the isosurfaces are linked. (d) Detail of Hopfion vortex rings. The
vortex rings are a consequence of the Hopf link and do not provide
topological protection on their own. The vortex rings are identified
by areas with a large m · ∇ × m. (e) Magnetization color map of a
toron at the z ¼ 0 plane. (f) Magnetization color map of toron at
the y ¼ 0 plane. (g) Toron spin textures with unlinked isosurfaces.
A toron has Q ¼ 0. (h) Detail of toron Blch points (monopole
antimonopole pair). The Bloch points are energetically unfavorable
singularities in the divergence ∇ · m created when the Hopf link is
broken. Without the uniform, fixed boundary condition, the Bloch
points are destroyed at the upper and lower boundaries of the disk,
and the toron becomes a skyrmion tube.
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In the high damping α ¼ 0.1 simulations a sinusoid,
HðtÞ ¼ Hmax sinð2πωmaxtÞ with ω ¼ 1 GHz and amplitude
ofHmax ¼ 12 mT was used to excite large amplitude breath-
ingmodes. The sinusoid was chosen here instead of the pulse
because the pulsed excitation quickly decays under large
damping. These high damping simulationswere run for 10 ns
simulation time with data recorded at increments of 0.1 ns.
Spin wave breathing mode spectrum under pulsed

magnetic field.—The spin wave resonances were excited
by a sinc pulse magnetic field in the þz direction. The
resonances are calculated by taking the spatially average
fluctuation in z magnetization hδmzðtÞi ¼ hmzðtÞ −mzð0Þi.
The hδmzðtÞi signal is the Fourier transformed signal to
compute the frequency of the resonances.
To examine how a static magnetic field affects the spin

wave spectrum, a set of simulation was performed with an
additional static magnetic field in þz in addition to a pulse
excitation.
Figure 2(a) shows the obtained power spectral density

(PSD) response of a Hopfion to the sinc pulse [see
Fig. 2(b)] under static applied field where the simulations
were performed in steps of 1 mT from 0 to 100 mT.
Whereas the Hopfion is stable at zero applied field, some
modes frequencies increase while others decrease as the
Hopfion constricts under increasing applied field. At a
critical field of 66 mT the Hopfion transforms into an
unlinked toron state, and this topological transition is

accompanied by a discontinuity in the spin wave spectrum.
Although a similar number of resonances are present for the
Hopfion and toron, which are labeled in Figs. 3(b) and 3(d)
with h.1–h.8 for the Hopfion and t.1–t.7 for the toron, the
spin wave spectrum is discontinuous across the transition,
only mode h.4(t.5) is continuous across the transition.
The width of the resonances modulates under the

changing of applied fields, which intensifies when
approaching the critical field, implying that Hopfions have
a field dependent quality factor to their resonances.
Figures 3(a) and 3(c) show the location in frequency

space of the five Hopfion and toron resonances at 50 and
80 mT, respectively. To illustrate each resonance spatially,
the amplitude of each spin wave resonance is indicated with
isosurfaces in real space, Figs. 3(a) and 3(c).
For the Hopfion, the lowest frequency mode, h.1, has

four localized maxima in vertically stacked rings Fig. 3(a).
This mode is a breathing resonance as the hopfion expands
and contracts. The lowest frequency mode of the toron is
also localized in stacked rings, but in the case of the toron
only two rings, one at the top and another at the bottom on
the disk occur Fig. 3(c). At the Hopfion to toron transition,
this mode is discontinuous in both real space, with the
transition from four rings to two rings, and in frequency
space. The discontinuity of the mode is a consequence of
the topological transition from Hopfion to toron. For the
Hopfion the mode is localized around the vortex rings, in
the case of the toron the mode is located near the Bloch
points. At 66 mTwhen the vortex rings collapse into Bloch
points the discontinuous transition of the spin texture
causes a discontinuity in the lowest frequency mode.
The next lowest frequency modes, h.2 and t.2, have the

largest amplitude at the edge of the disk. This edge mode is a
feature of the geometry and would occur even in the case of a
uniformly magnetized disk. In the toron state, this mode also
excites the spin texture, suggesting that the toron, with its
nonzero divergence, is more strongly coupled to the geom-
etry of the system than the smooth and localized Hopfion.
Other modes have complicated distributions across the

disk. For all modes the disk edge, Hopfion vortex rings, and
toron Bloch points host the highest amplitude spin waves and
are surrounded by concentric rings of low-amplitude spin
waves.Mode h.4 (t.5) alone is continuous across the Hopfion
to toron transition. It is worth noting, that the defects, i.e., the
Bloch points or vortex lines, play an important role, as they
exhibit a more complicatedmicrostructure than the surround-
ing bulk, allowing for a wider range of frequencies to exist.
This effect is analogous to spin wave channeling by domain
walls in two-dimensional systems [28].
Impact of damping.—Further insight into the field-driven

dynamics of Hopfions and torons is obtained by consid-
ering the impact of damping (Fig. 4). The complex spin
wave resonances spectrum is only present for a low
damping parameter. For a value of α ¼ 0.001 there are
eight major peaks of varying intensity in the resonance

FIG. 2. (a) PSD response of a Hopfion to a sinc pulse under
static applied external field (damping parameter ∝ ¼ 0.001).
(b) Magnetic excitation pulse applied in the x direction in the time
domain. Pulsed field is the cardinal sign or sinc function.
(c) Fourier transform of the excitation pulse in the frequency
domain. The sinc function creates a square wave with equal
sampling frequency up to a maximum frequency of 15 GHz.
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spectrum (Fig. 4). In contrast, with a large damping
parameter α ¼ 0.1, the resonant peaks broaden and merge
into two or three low frequency modes with broad peaks
and reduced amplitude. a single wide band around 4 GHz
with reduced amplitude.
In the low damping regime the highest amplitude

Hopfion modes are h.2 and h.3. Mode h.3 is localized
near the Hopfion vortex rings, and mode h.2 is the edge
mode. Under higher damping, the edge mode h.2 merges
with the vortex mode and shifts to a lower frequency. This
combined edge and vortex mode is the largest mode in the
α ¼ 0.1 regime.

In the case of the toron, mode t.1 has highest amplitude
at α ¼ 0.001. Mode t.1 is localized around the Bloch
points. The mode with the second highest amplitude, t.2 is
localized around the edge of the disk at α ¼ 0.001. Under
higher damping, α ¼ 0.01 t.1 and t.2 have equal amplitude.
At an extreme value of damping α ¼ 0.1 the dynamics
enter a new regime and distinct modes merge into broad,
low amplitude resonances. For the toron in the α ¼ 0.1
regime, the highest amplitude excitation is localized on the
edges of the disk.The Hopfion mode h.2, which has the
largest amplitude in the power spectral density is also most
robust to damping. It is localized around the vortex lines at

FIG. 3. (a) Localization of the resonant spin-wave modes of a magnetic Hopfion under a 50 mT applied field. Renderings are a half-
disk cross section cut through the x ¼ 0 plane. Brighter colors indicate increasing spin wave amplitude. Each figure is normalized to
have the same highest amplitude (damping parameter ∝ ¼ 0.001). (b) PSD plot indicating the frequency, and relative amplitude of the
Hopfion modes. (c) Localization of the resonant spin wave modes of a magnetic toron under an 80 mTapplied field (damping parameter
∝ ¼ 0.001). (d) PSD plot indicating the frequency of the toron modes.

FIG. 4. (a) Hopfion PSD at 0 mT applied field under varying damping parameters. Power spectra lines are normalized to have equal
area. PSD with damping parameter ∝ ¼ 0.001 and 0.01 are on the left axis, PSD with ∝ ¼ 0.1 is on the right axis. (b) Toron power
spectral density at 0 mTapplied field (system initialized in toron state, no field switching) under varying damping parameters. PSD with
damping parameter ∝ ¼ 0.001 and 0.01 are on the left axis, PSD with ∝ ¼ 0.1 is on the right axis.
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the top and bottom of the Hopfion, with an additional
component in a ring in the center of the Hopfion. The
second most robust mode with regard to damping, h.3. is
also localized at the vortex line. This topological vortex line
not only concentrates the dynamics of the Hopfions, it also
increases their robustness under damping.
In the case of the toron the most robust mode, t.2., is

localized not only around the Bloch points at the top and
the bottom, but also couples to the edge of the disk. The
toron’s Bloch points are less excitable by an out of plane
field than the Hopfion’s vortex lines. The modes that are
localized only around the Bloch points quickly disappear
under damping, while the mode t.2., which is coupled to the
edge of the disk, persists.
Spin wave mode excitations under sinusoidal magnetic

field.—The regime of highly damped oscillations from an
off-frequency excitation are of phenomenological interest.
Experimental studies are unlikely to have full knowledge of
the material parameters necessary to make precise predic-
tions of resonant frequencies. Also, α is strongly dependent
on the quality of sample fabrication. The state-of-the-art
methods for time-resolved x-ray microscopy in three
dimensions do not yet have the resolution in time or space
to observe the three-dimensional gigahertz mode reported
in Fig. 3. For these reasons, we include this section with
findings on field driven response of a Hopfion under
experimentally realistic conditions and demonstrate that
even under these conditions the response of the Hopfion to
an applied sinusoidal field is distinct enough to distinguish
it from the related target skyrmion state.
In the highly damped regime (α ¼ 0.1) coherent dynam-

ics can still be excited with sinusoidal applied fields, which
produces a breathing response to an out of plane field. These
responses follow the driving force after a period of transience
and die out quickly after the sinusoidal field is removed.
To gain insight into the high damping breathing modes

under realistic conditions, we consider the 2D projection
of mz which would be measured in a time-resolved x-ray
transmission microscopy type experiment Fig. 5(c).
The radial symmetry of the Hopfion projection allows us

to describe mz with a single vector, MzðrÞ.
A response vector is computed by taking the change in

Mz at each time step,

ΔMzðr; tiÞ ¼ Mzðr; tiÞ −Mzðr; ti−1Þ:

Taking the outer product of the response vectors and
summing over time steps we construct the correlation
matrices shown in Figs. 5(a) and 5(b).

Czðrj; rkÞ ¼
X

i

ΔMzðrj; tiÞ ⊗ ΔMzðrk; tiÞ:

The bright regions indicate pairs of radii where oscil-
lations are correlated (in phase), the dark regions indicate
pairs of radii where the oscillations are anticorrelated (out
of phase).

For comparison, this correlation matrix is constructed
for the Hopfion as well as the related target skyrmion. The
Hopfion response is more localized to the torus, while the
target skyrmion correlation is more spread out over the disk,
Figs. 5(a) and 5(b). This results from the three-dimensional
nature of the Hopfion. The Hopfion is localized to the torus,
essentially a one-dimensional closed string. The target sky-
rmion, on the other hand, is spread out over the entire disk.
The characteristic features in the dynamical behavior

shown here could prove useful to differentiate experimen-
tally between a Hopfion and a target skyrmion texture.
Figures 5(c) and 5(e) show simulated soft x-ray trans-
mission microscopy data, which are only probing the
magnetization projection along the z axis, and cannot
distinguish those two spin textures [17], which are different
as shown in Figs. 5(d) and 5(f). The distinct correlation
matrices of the spin dynamics of these two spin textures
would allow the confirmation of three-dimensional char-
acter of the spin textures.
Conclusion.—We have found strong dependences of the

resonant spin wave dynamics in 3D spin textures on their
topology. Topological defects such as vortex lines in the
case of Hopfions and Bloch points in the case of torons
were identified as attractors to localized spin waves in these
systems. This extends the idea of domain walls as spin
wave channels [28] into three dimensions.

FIG. 5. (a) Hopfion correlation matrix (damping parameter
∝ ¼ 0.1). (b) Target skyrmion correlation matrix. (c) Hopfion mz
magnetization at the z ¼ 0 plane. (d) Hopfionmz magnetization at
the y ¼ 0 plane. The Hopfion torus does not reach the top and
bottom of the nanopillar. (e) Target skyrmion mz magnetization at
the z ¼ 0 plane. In an experimental setting, the Hopfion and target
skyrmions are indistinguishable with this static single projection in
an XMCD or LTEM type experiment. (f) Target skyrmion mz
magnetization at the y ¼ 0 plane. The target skyrmion extends
uniformly from the top to the bottom of the nanopillar.
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The collapse of vortex lines in Hopfions into Bloch points
in torons upon applying external magnetic fields is accom-
panied by a sharp discontinuity in the spin wave spectrum.
Though the modes are discontinuous in frequency space, in
real space the spin waves are localized to analogous regions
with topological defects (Bloch points and vortex rings) and
largeHeisenberg energy. These regions serve to focus the spin
waves and provide a larger spectrum of excitable frequencies.
The correlated motions of these spin textures are also

distinct. The resonances of a Hopfion are more localized at
the torus than those of a target skyrmion. The radial
breathing modes of the target skyrmion were found to
hybridize with modes traveling vertically [12]. Hopfion spin
waves are stronger localized but are in general not coupled to
the boundary. Therefore, since the Hopfion is shielded by the
uniformly magnetized background it is embedded in, the
spin wave resonances are more stable against external
perturbations, which could open an avenue to harnessing
excitations in Hopfion lattices and their breathing mode as
information carriers in three-dimensional architectures [29].
The work presented here is limited to findings on the

textures’ resonant responses to out-of-plane exications.
Similar results on the energetics of the Hopfion to toron
transition, textures’ resonant in respond to in-plane exci-
tations, and Hopfion stability across material parameters
are available in the supplemental information [30].
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