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Using Disorder to Identify Bogoliubov Fermi-Surface States
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We argue that a superconducting state with a Fermi surface of Bogoliubov quasiparticles, a Bogoliubov
Fermi surface (BG-FS), can be identified by the dependence of physical quantities on disorder. In particular,
we show that a linear dependence of the residual density of states at weak disorder distinguishes a BG-FS
state from other nodal superconducting states. We further demonstrate the stability of supercurrent against
impurities and a characteristic Drude-like behavior of the optical conductivity. Our results can be directly
applied to electron irradiation experiments on candidate materials of BG-FSs, including Sr,RuQOy,

FeSe,_,S,, and UBe,;.
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Introduction.—Elucidating the role of disorder on inter-
acting quantum many body systems has been a central issue
in strongly correlated physics, as manifested in the recent
advances in quantum scrambling physics [1-6]. One
important class of interacting systems is strong spin-orbit
coupled systems with angular momentum j = 3/2 [7-11].
A quadratic band touching at the Gamma point in the
Brillouin zone naturally hosts a large density of states
(DOS), and interaction and disorder effects are significantly
enhanced [12-17]. Not only interesting normal states but
also novel superconducting states are predicted [18-32]. In
addition to the traditional gap structures with a full gap, a
point-nodal gap, and a line-nodal gap, a Fermi surface of
Bogoliubov (BG) quasiparticles in a superconducting state,
a so-called Bogoliubov Fermi surface (BG-FS) [19,33-36]
has been demonstrated. It has been shown that a BG-FS is
topologically protected by a Z, invariant in centrosym-
metric systems with broken time-reversal symmetry [37].
Recently, the role of interactions on such BG-FS has been
considered, where it has been shown that such BG-FS
states can undergo an instability to a noncentrosymmetric
state [38—40]. It is confirmed that a BG-FS may still survive
even with an inversion instability [38,41]. There have been
several candidate materials, including heavy-fermion sys-
tems (URu,Si,, UBej3), strontium-based compounds
(Sr,RuQy, SrPtAs), and doped iron-based superconductors
(FeSe;_,S,), but the existence of a BG-FS has not been
demonstrated yet [34,35,42-52].

In the previous literature, several ideas to detect a BG-FS
have been suggested, focusing on the presence of a finite
nonzero DOS at zero energy in the clean limit. This can be
detected through the temperature dependence of single-
particle observables such as specific heat or penetration
depth. However, the properties associated with a nonzero
DOS cannot confirm the existence of a BG-FS because
line-nodal systems with even infinitesimally low disorder
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may induce a nonzero DOS [53,54]. Thus, it is highly
desired to account for disorder effects on BG-FSs.

In this work, we investigate the role of disorder on a BG-
FS and demonstrate that a unique signature allows a BG-FS
to be identified from other nodal superconducting states. In
particular, we show that a linear behavior of the residual
DOS upon changing disorder and a finite superfluid density
are necessary and sufficient conditions of the existence of a
BG-FS. These can be measured by experiments, for
example, via electron irradiation experiments. We calculate
the optical conductivity [55,56] which is a powerful tool to
learn the nature of the superconducting pairing gap even in
the presence of disorder. Our work reconciles the role of
disorder on various superconducting states with different
dimensionality of zero-energy excitations and provides a
new perspective on realizing exotic superconductivity.

Model.—We consider a model Hamiltonian of a BG-FS.
The total Bogoliubov—de Gennes (BdG) Hamiltonian is
given by

where W1 = (y/g,yﬁ 1?) is a eight-component Nambu spinor,
and wi = (c,;_%,c;% €l Cl'é.—%) is a four-component
j=3/2 spinor. For clarity, we choose a standard
Hamiltonian introduced in the previous literature [19].
The kinetic part is described by the so-called, Luttinger
Hamiltonian,

HN(%) = gijkikj —H, (2)
with
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The 3 x 3 Gell-Mann matrices (A“) and 4 x 4 Gamma
matrices (y,) whose explicit forms are introduced in the
Supplemental Material [57]. Three dimensionless param-
eters (g, ¢, Cy) are used with the chemical potential (u)
and the effective mass (m). For pairing, a chiral time-
reversal symmetry breaking (TRSB) pairing is chosen,

A(K) = Ag[Ty + i), (4)

where the overall pairing amplitude A, is fixed as a real
number and the pairing matrices I', = y,Ur are introduced
with a 4 x 4 antisymmetric matrix Uy = y3y;. For numeri-
cal evaluation, we set ¢y =0, ¢y = =m=pu=1,
where SO(3) symmetry is realized in the normal Fermi
surface. Hereafter, our discussion is based on the above
microscopic Hamiltonian unless otherwise stated.

The contours of zero-energy states form a toroid and
spheroids in momentum space. For Aj # 0, the DOS of
clean BG-FSs D(E) follows the scaling relation, D(0) «
|Ag| and D(E) — D(0) « E? in the low energy limit. Details
on the zero-energy manifold and DOS are explained in the
Supplemental Material [57].

Disorder and residual density of states.—We consider
nonmagnetic impurities at randomly distributed positions,
7,. Assuming SO(3) rotational symmetry, the momentum-
dependent disorder potential is

Nimp

Hgs = 21[?1}" e/k=h7a [W;Vdis(]%v /ACI)V/;;’L (5)

with

where Njy,, is the number of identical impurities, V; is an
impurity scattering amplitude. Hereafter, the short-hand
notation, [; = [[d*k/(27)%] = (1/V) >z, is used with a
volume of a three-dimensional system ). The Legendre
polynomials (P;) capture the angular dependence on
the Fermi-surface with an angular momentum quantum
number (/). After performing the disorder-average,
translation invariance is restored and the Green’s function

of the disordered BG-FS is modified as, ggil(l_c), iw) =
G5l (k. iw) — S4is (k. i), where Gy'(k, iw) = iw — Ho(K)
is the original Green’s function and Zdis(lz, iw) is the
disordered self-energy. In the following, we consider the

case with / = 0 as a proof of concept and consider a dilute
limit of disorder, the so-called Born limit.

Employing the first order Born approximation, the scalar
channel contribution to the self-energy is

Suslio) =3 [ TGo(E. )] (©

with two parameters, ry = nimpV(z), Nimp = Nimp/ V. Note that
all channels other than the scalar channel may be neglected
and absorbed into the changes of microscopic parameters.
The imaginary part of the self-energy gives the scattering
rate, FdiS(E + 117) = —ImZdiS(E —+ lﬂ) = (r0/8)ﬂD(E), via
analytic continuation with an infinitesimal convergence
parameter, 17 > 0. It is evident that there is a nonzero
scattering rate, I' = T'g;s(in) > 0, at zero frequency, as a
consequence of the nonzero DOS of a BG-FS. The scattering
rate needs not be solved self-consistently in contrast to
superconductors with line nodal gaps where self-consistent
calculations are essential. The disorder averaged spectral
function, Ays(k, E) = [Gyis (k. E + in) — Guis (k, E — in)] /2,
gives the DOS with disorder scattering potentials,

Du(E) = - [ThaaEB) ()

as a function of a scattering rate (I'). The residual DOS is then
defined as a difference between the DOS of dirty and clean
systems, 8D (') = Dg;s(0;T") — D(0).

In Fig. 1, we contrast the residual DOS of a BG-FS with
that of superconductors with different nodal structures. The
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FIG. 1. Schematic DOS plot at zero energy [Dg;(0)] with
various nodal superconductors as a function of impurity strength,
rg = nimpr). The insets show zero-energy excitations in the
momentum space of four different states, BG-FS (a), line-nodal
(b), point-nodal (c), and fully gapped (d) superconductors. The
linear dependence of DOS on ry is a distinctive property of a BG-
FS. Here, r* is a resonant impurity strength for a line-nodal
superconductor [53] and (7, r.,) are critical values of r, for
point-nodal and fully gapped superconductors, respectively (see
Supplemental Material [57]). The functional forms of
8Dg;is (05 r9) = Dyis(0; ry) — D(0) are tabulated in Table L.
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TABLE 1. Disorder dependence of physical quantities for
different nodal superconducting states: (A) BG-FS, (B) line-
nodal, (C) point-nodal, and (D) fully gapped superconductors.
(E) is for normal metals. The functional form, 6D;(ry), super-
fluid density, D, and the Drude-weight, Dp, in the clean limit are
illustrated.

States 6Dy (1) D, Dp
(A) x 1y @) O
(B) o exp[—(r"/ro)l/ro O X
(C) & [(l/rc,l)_(1/r0)]9(r0_r(7,1) ©) X
(D) < /(1/rep) = (1/ro)0(r —rc») O X
B x Iy X O

ro dependence of the residual DOS is qualitatively different
for the different nodal states. A few remarks are as follows.
First, the residual DOS for a BG-FS shows a linear
dependence on ry. To see this, we introduce a UV energy
cutoff (Ayy), for example, the bandwidth, the DOS for a
BG-FS is then approximated as

Aypy I'/=
5D (I') = /O JED(E) [ﬁ—«%@] —al. (8)
at lowest order in I'/Ayy < 1. For our choice of param-
eters, we find a linear increase in the residual DOS (a, > 0)
on I'. Using I = (ry/8)zD(0), this implies that the DOS
linearly increases upon increasing r,. We can generalize the
above discussion to a momentum-dependent disorder
potential (/ > 0) by including the angle dependent scatter-

-

ing rate I'(k) and see similar results (see Supplemental
Material [57]). We remark that the sign of coefficient q; is
not universal but depends on the specific forms of band
dispersion and disorder potential. Second, Eq. (8) may be
generalized to systems with different nodal gap structures
by considering a generic clean DOS, D(E) « E", this
allows us to understand the significant differences in
Fig. 1. To be specific, for line nodes, an infinitesimal
impurity scattering may induce a zero-energy DOS which
follows a nonlinear behavior, while it does not affect the
DOS unless ry > r. for point nodes or full gaps. The
formulas of DOS as a function of r( are tabulated in Table I
and their detailed derivations are explained in the
Supplemental Material [57]. Thus, we argue that the linear
dependence of the residual DOS on impurity scattering is a
unique property of BG-FSs. Third, the linear dependence of
the residual DOS is observable in experiments, for exam-
ple, in the tunneling conductance between a normal
conductor and a BG-FS. Standard calculations show that
the linear dependence effects are intact even at nonzero
temperature, provided that temperature is sufficiently small
compared to other energy scales, such as the disorder
scattering rate or the Fermi energy of Bogoliubov quasi-
particles (see Supplemental Material [57]).

Optical conductivity.—Let us consider disorder effects
on the optical conductivity of a BG-FS. We focus on two
aspects of the optical conductivity: The stability of the
supercurrent and the existence of a Drude-like frequency
dependence. We employ the standard linear response
theory, and the real part of the optical conductivity in
the spatially homogeneous limit is

_1mQ(w -+ in) | ReQU(0)

Rec' (w) =
w n

5(w), (9)
where Q% is the London response kernel. The conductivity of
superconductors is decomposed into two parts. The former is
called the regular part, oy (@) = —ImQ" (w4 in) /@, and the
latter is called the singular part from the supercurrent,
characterized by the superfluid weight, DY = ReQ%(0)/x.

The current operator is decomposed as the paramagnetic
(p) and diamagnetic (d) parts. In the Nambu basis (‘¥7), the
zero-momentum current operator reads

= [WT®Y T T (o)

with
DT gt] O X -
B =2y o JF =0l (1)
ij
and
7 9ij 0 ; P4
Tylk) = -2 0 g Al = —0,0/Ho(k)A7,  (12)
ij

where the Hartree unit (¢ = A2 = 1) is used. The Pauli
matrix (z;) acts on the particle-hole space and 9; = 0y, is
the derivative with respect to the momentum k. The
explicit forms of the paramagnetic and diamagnetic con-
tributions to the London response kernel are

g(lwn) :TZ/ETr[gdli (];: lkn)jlpgdls(]zlkn +lwn)\7;7]’

ik,

and
0}l (iw, =0) =T / Tr(Gai (k. ik )01, Hol.
ik, Jk

respectively. Note that only the zero-frequency component
(im,, = 0) contributes to the diamagnetic kernel [58]. In
what follows, we focus on the (i, j) = (z, z) component of
the conductivity under isotropic disorder (/ = 0) at zero
temperature (7" = 0).

We first consider the singular part of the optical conduc-
tivity associated with the supercurrent. The superfluid
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FIG.2. (a) The ry dependence of the superfluid weight D% (r).
The clean limit of the supercurrent is interpolated as a positive
value, D% = 0.163¢*\/myu*/h’. (b) The frequency and ry
dependence of regular part of conductivity, oi5(w;r). The
different values of ry/Ay = {0.1,0.2,0.5,1,2} are used and
denoted with different colors. Inset shows o7 (rg) = D3 /ry in

the small r, limit with a Drude weight, D3 = 0.168¢2\/mu’ /7.

weight is obtained by the relation,
Re[Q37(0) + Q% (0)]/x, whose explicit form is

Di(rg) =

D (o) ___// 2 Tr(Gai (K. i0) T (R). 7.,

The commutator in the integrand indicates that D% (rq) = 0
if a U(1) symmetric system is considered. In Fig. 2(a), we
illustrate D(r).

Our calculations indicate that the supercurrent still
survives under weak disorder in a BG-FS. We note that
in contrast to the previous results without disorder, our
calculations converge even at 7 = 0 due to the scattering
rate of the Green’s function. In the clean limit (r, — 0), the
superfluid density (D% = 0.163¢*+/my’ /A*) interpolates
to a nonzero positive value, which shows the stability of the
supercurrent under disorder and temperature. These results
indicate that the supercurrent survives even with the
instability associated with the inversion symmetry breaking
in a centrosymmetric BG-FS. The superfluid density is
naturally suppressed by increasing r,, similar to super-
conducting states with different nodal structures [59,60].
We stress that the presence of a Fermi surface of
Bogoliubov quasiparticles cannot destroy the supercurrent
in contrast to the Landau damping of bosonic excitations in
metals.

Next, we calculate the regular part of the optical
conductivity of a BG-FS. After analytic continuation, we
find

0 dy
Greg w; }"0 // —TrAdlS k U)j Adls(k I/—|—(x))jz]
for w >0 and T = 0. Here, Adis(lz, E) is the disorder
averaged spectral function of a BG-FS. In Fig. 2(b),
oy (@; ry) is plotted as a function of a frequency @ and

the parameter ry. A Drude-like behavior near zero fre-
quency with a Lorentzian distribution is obtained, similar to
that found in metals In the zero-frequency limit, the dc
conductivity, o (ry) = lim,,_055, (@; ry), becomes

1 - -
) = [ Tl E. 0T340 0T (13)

at zero temperature. Note that a nonzero dc-limit conduc-
tivity also appears in line-node superconductors, for exam-
ple, d-wave superconductors [53,56,60,61], but it is not
Drude-like in contrast to a BG-FS, where 6((ry) < 1/r is
manifested [see inset of Fig. 2(b)]. In the clean limit, the dc
conductivity of a BG-FS diverges and yields a Drude-
weight, D5 # 0,

lim Ufég@‘); rO)
ro—0

= DE6(w) + . (14)

where a nonsingular term is omitted in - - -. We find Dj; =

0.168¢>+/mu’ /#* for our choice of parameters. In the
Supplemental Material [57], the dc conductivity of super-
conducting states with various nodes and their I" depend-
encies are shown. Therefore, The Drude-like behavior is a
distinctive feature of a BG-FS.

Discussion and conclusion.—Our studies indicate that a
BG-FS may be uniquely characterized by the dependence
on disorder. Thus, we propose electron irradiation experi-
ments can be a powerful tool to identify a BG-FS by
observing the linear disorder dependence of the residual
DOS and superfluid density, as summarized in Table 1.

Our results are directly applicable to experiments. We
believe that the candidate materials of BG-FSs such as
FeSe;_,S, for x > 0.17 [62] and Th-doped UBe,3 [45] are
promising since a likely intrinsic residual density of states
has already been reported to be observed. We stress that
other experiments such as heat capacity and the magneto-
optical Kerr effect can be also used to observe the disorder
dependence since the residual DOS appears in these
observables.

Note that, for simplicity, our calculations mainly focus
on the cases with a SO(3) symmetric normal band structure
and non-magnetic impurity scattering at zero temperature.
It is straightforward to generalize our calculations to
include anisotropic and magnetic impurity scattering and
we show in the Supplemental Material [57] that our main
results are not modified. In particular, the robustness of a
BG-FS against disorder is considered, and we prove that the
Anderson theorem is violated for a BG-FS in accordance
with common wisdom. Considering both arbitrary pair-
ings and generic disorder potentials, we quantify the
fragility of a superconducting state and generalize the
concept of superconducting fitness function and the pre-
vious literature [63—-67]. See Supplemental Material [57]
for more information.
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The following questions regarding a BG-FS remain to be
answered in future research. The strong disorder effects on a
BG-FS need to be understood. It would be interesting to
clarify whether the conventional approach with the nonlinear
sigma model in symmetry class D applies [68,69]. The
verification of the f-sum rule on the linear conductivity of a
BG-FS and the generalization to the nonlinear conductivities
is also an open question [70]. We believe that our work may
raise many interesting future studies and open up new
directions to search for exotic superconductivity.
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