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A probability density function describing the angular evolution of a fixed-length atom-atom vector as a
Lévy rotor is derived containing just two dynamical parameters: the Lévy parameter α and a rotational time
constant τ. A Lévy parameter α < 2 signals anomalous (non-Brownian) motion. Molecular dynamics
simulation of water at 298 K validates the probability density function for the intramolecular 1H─1H
dynamics. The rotational dynamics of water is found to be approximately Brownian at subpicosecond time
intervals, becomes increasingly anomalous at longer time intervals due to hydrogen-bond breaking and
reforming, before becoming indistinguishable from Brownian dynamics beyond about 25 ps. The Lévy
rotor model is used to estimate the intramolecular contribution to the longitudinal nuclear-magnetic-
resonance (NMR) relaxation rate R1;intra. It is found that R1;intra contributes 65%� 7% to the overall
relaxation rate of water at room temperature.
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Water is a complex liquid and the most important
substance in nature. The water dynamics is critical to the
understanding of protein folding, biomolecular water inter-
face dynamics, water dynamics at the surfaces of porous
materials, and the behavior of solvated ions, to list but a few
examples. Each of these processes is fundamental to life
itself.
The dynamics of water may be probed by 1H nuclear

magnetic resonance (NMR) techniques. For instance, the
longitudinal relaxation rate R1 is exquisitely sensitive to
changes in the magnetic dipole-dipole interaction due to the
relative motion of pairs of 1H spins arising from the
collective effects of vibration, bond stretching, libration,
tumbling, collisions, and the breaking and reforming of
H bonds [1]. Time constants associated with specific
motions may be measured or inferred using infrared
spectroscopies or isotope-enhanced NMR methods (see
[2–5] and sources therein).
The complex combination of translational and rotational

motions can be subcategorized into inter and intramolecular
contributions. The intermolecular dynamics describes the
evolution in space and time of a vector connecting a 1H spin
on one molecule to a second 1H spin on a different mole-
cule. The intramolecular contribution accounts for pairs of
spins on the same molecule. The time evolution of both the
angular rotation and the vector length contribute to the
observed relaxation rate.
This Letter focuses on intramolecular 1H─1H spin

dynamics. A description of the rotational dynamics of an
intramolecular 1H─1H spin vector is presented which
encapsulates the complex dynamics with just two para-
meters. The dynamics is described as a Lévy random walk
[6]. Lévy statistics have been used to characterize an

enormous range of physical phenomena from foraging
albatrosses to entropy, from stock price fluctuations to heart
beats [7]. Lévy statistics applies to phenomena in which the
more extreme events occur more frequently than predicted
by a Brownian process leading to tails of the probability
density that follow a power law rather than an exponential
decay. This is often referred to as “anomalous” diffusion.
The Lévy model may be used to describe anomalous

rotational diffusion in liquids in the bulk or confined in a
porous medium, in large-molecular systems, and even in
aqueous solutions containing ionic complexes. Here, the
Lévy rotor model is applied to liquid water. Water is a
relatively simple system that can be used to validate the
Lévy model through molecular dynamics (MD) simulations
using well-characterized force fields. Hydrogen-bond
breaking and reforming is the known source of sudden
angular changes leading to anomalous rotational dynamics.
The Lévy model is then used to estimate the intramolecular
contribution to the spin-lattice relaxation rate R1;intra=R1. In
pure water, R1 is independent of the Larmor frequency over
the frequency range 0.01–40 MHz and equal to 0.280 s−1

[8]. In ionic complexes, chemically bound or physisorbed
environments, R1 is a function of Larmor frequency.
The simplest description of the intramolecular rotational

dynamics dates from 1929 and the work of Debye [9] in
which an atom-to-atom vector is described as a Brownian
rotational diffuser executing a random sequence of small
rotational steps. The simple model provides a prediction for
the NMR relaxation rate R1 [1,10]. Ivanov [11] provided a
general mathematical treatment of rotational diffusion and
identified that the rotational time constants should be
experimentally measurable. A recent examination of water
dynamics undertaken by Laage and co-workers in a series
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of articles [12–16] provides insight into the dynamics not
only of water but also of hydrated ions and complexes. The
reorientation dynamics of water due to hydrogen bonding is
discussed [14]. After a H bond is broken, the H bond may
reform with the same or a different oxygen acceptor. Each
process is characterized by a different time constant
resulting in a highly complex dynamical picture only
partially clarified by experiment and MD simulations.
Popov and co-workers [17] provide a detailed review of
H-bond network dynamics and its influence on particle
dynamics, describing the role of processes (macroscopic
motion, vibrational modes, libration) on multiple time-
scales up to 10 THz.
The Lévy model for a water molecule is illustrated in

Fig. 1. The vector r0 connects the two H atoms in a single
water molecule at time t ¼ 0 and is of fixed length a. The
water molecule is in motion and the vector r changes
direction (but not length) as a function of time. The angle ψ
is the smallest angle between the two vectors r0 and r at
time t. Small fluctuations of angle ψ may be described by
Brownian dynamics. Occasionally the rotor undergoes a
large change of angle which might be due to H-bond
breaking and reforming with a different water molecule.
The process repeats with the angular evolution of r

described as a Lévy rotor as seen in MD simulations [3]
and NMR experimentation [18,19].
The key result of this Letter is a time-dependent angular

probability density function Pðψ ; tÞ of a fixed-length rotor
that captures the anomalous diffusion as a Lévy random
walk and which fully accounts for the angular boundary
conditions; ψ cannot take values less than zero or greater
than π. The expression for Pðψ ; tÞ is justified in
Supplemental Material [20–22] as

Pðψ ; tÞ ¼ NðtÞ
�
1þ 2

X∞
p¼1

e−p
αt=τ cospψ

�
; ð1Þ

where τ is a characteristic rotational time constant and
NðtÞ is a normalization constant (found in Supplemental
Material [20–22]). The Lévy parameter α is a measure of
the departure from Brownian motion. If α ¼ 2, Brownian
rotational dynamics is recovered. Anomalous diffusion is
associated with α < 2 with α ¼ 1 a special case of Cauchy-
Lorentz dynamics. The rotational time constant τ in Eq. (1)
is defined differently to time constants bearing the same
name in previous work. Here, τ=2 is the average time taken
for a rotor to move through an angle of one radian.
The time-dependent probability density function of

Eq. (1) fully accounts for angular boundary conditions
and has broad applicability. For example, Pðψ ; tÞ may be
used to describe both Brownian or anomalous rotational
motion of any vector connecting atom pairs in single
molecules such as those containing paramagnetic markers
for image enhancement in medical and biological research,
or for rotors connecting aqueous ions and atoms in its first
hydration shell.
The validity of the expression for Pðψ ; tÞ was checked

using MD simulation for water. All MD simulations rely on
force fields that describe the intramolecular and intermo-
lecular interactions between atom types. The flexible
extended single-point charge (SPC/E) force field [39]
was chosen because it has been widely used in previous
MD studies supporting NMR experimentation [2,3,34].
The MD model using the SPC/E force field incorporates
fully flexible bonds including angular vibration and bond
stretching. The LAMMPS package was used for all simu-
lations [40]. A system of 13 500 water molecules in a cubic
box was pre-equilibrated to a temperature of 298 K and
zero applied pressure under isothermal and isobaric con-
ditions. The simulation temperature was controlled using
the Hoover thermostat [41] and periodic boundary con-
ditions were applied. The data gathering used the NVT
(constant number of particle, volume, and temperature)
ensemble for a time period of 100 ps with atomic positions
recorded at 1 ps intervals.
The probability density function Pðψ ; tÞ sinψ is com-

puted for times t ¼ 0.01–25 ps using Eq. (1) and fit to the
distribution obtained fromMD simulation. The optimum fit
as judged by minimizing the least-squared deviation to

H

H

H

FIG. 1. The Lévy model accommodates non-Brownian rotation
dynamics such as H-bond breaking and reforming, illustrated top
left by three water molecules with a H bond (dashed line) which
breaks and reforms with a different water molecule (top right).
Below, a coordinate system places one H-atom of a water
molecule at the origin. The second H atom is a fixed distance
a from the first and shown on the surface of a sphere of radius a.
The 1H─1H vector at t ¼ 0 is labeled r0. Rapid small angular
movements of the 1H─1H vector (solid lines) are punctuated by
sudden large angular changes (dotted arrows). An example
1H─1H vector at time t is labeled r. The smallest angle between
r0 and r is ψ .
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provide α and τ. Figure 2 compares the evolutions at t ¼ 5,
15, and 25 ps. The distributions for a Brownian rotor
provide a poor match to the MD results. By contrast, the
Lévy model of Eq. (1) provides excellent fits confirming
that the rotational dynamics of water is anomalous. For
times t ≥ 25 ps (not shown), the distinction between Lévy
and Brownian dynamics disappears (see Supplemental
Material [20,25]).
The results for α and τ are presented in Fig. 3. As

anticipated, α → 2 at very short time intervals indicating
Brownian rotational dynamics with small angular changes
characterized by a picosecond time constant. The rotational
motion becomes increasingly anomalous for longer time
intervals due to large changes in angle associated with
H-bond breaking and reforming causing α to decrease. α
attains a constant value of approximately 0.8 for time
intervals in excess of 15 ps. The uncertainties in τ and α
based on a 5% deviation from the minimum of the least
squares quality-of-fit parameter are �0.2 ps and �0.04,
respectively. At longer times, however, Pðψ ; tÞ becomes
less sensitive to α, the uncertainties increase (as shown for
t ¼ 23–25 ps), and the distinction between the Lévy and
Brownian models diminishes (see Supplemental Material
[20,25] for further details).
Infrared (IR) spectroscopy may be used to measure

rotational time constants in water. An O─H bond switching
time of approximately 2.5 ps is suggested from both
experiment and MD [4]. Ultrafast 2D IR vibrational-echo
chemical-exchange spectroscopy has been used to measure
an anion-oxygen H-bond switching time constant of 6.5 ps
[42]. The rotational time constant τ̄=2 ≈ 4 ps found here
corresponds to the characteristic time for an angular change
of 1 radian, approximately the H-bond switching angle, and
is consistent with the experimental values.
Experimental 1H NMR relaxometry of water measures

R1 but cannot resolve the individual dynamic components
that contribute to the relaxation rate. In a model, however,
the contributions of the intramolecular and intermolecular

components may be separately estimated. The intramo-
lecular contribution is associated with the rotation of the
fixed-length 1H─1H vector in the applied magnetic field
and the intermolecular contribution is due to the relative
translational motion of pairs of 1H spins on different
molecules and includes changes in both vector length
and angle. The rotational time constant τ presented in
Fig. 3 as a function of time interval characterizes the
average intramolecular 1H─1H bond rotation due to all
dynamical processes.
Equation (1) supplies an excellent description of the

rotational dynamics of any vector r of fixed length a
connecting two hydrogen nuclei in water as a Lévy rotor in
terms of just two parameters, α and τ. Equation (1) is
used to estimate the intramolecular contribution to the
longitudinal relaxation rate R1 of pure water. The room
temperature relaxation rate for pure water was studied
extensively by 1H NMR relaxometry from the 1950s to the
1970s. Consistent values of R1 were achieved once the
contribution of dissolved oxygen had been identified and
removed. Krynicki [8] summarized the collective data
for air-free pure water at room temperature. The room-
temperature relaxation rate interpolated from Fig. 1 is
R1 ¼ 0.280� 0.010 s−1.
The Lévy model for intramolecular rotation assumes

that the distance between the two 1H spins on the same
water molecule is fixed and that the rotational evolution is
described by the probability density function Pðψ ; tÞ
given by Eq. (1). The time-dependent dipolar correlation
function GðtÞ describes how spin pairs move relative to
each other and is derived in Supplemental Material, Note 2
[20,23,24] as

GðtÞ ¼ 1

a6

Z
π

0

P2ðcosψÞPðψ ; tÞ sinψdψ ; ð2Þ
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FIG. 2. The figure presents the probability density function
Pðψ ; tÞ sinψ obtained fromMD simulations (symbols). The Lévy
model (solid lines) and Brownian models (dashed lines: 5 and
15 ps only for clarity) are obtained using Eq. (1).
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FIG. 3. The figure presents the Lévy parameter α and rotational
time constant τ obtained from fits to MD results using Eq. (1) for
time intervals t ¼ 0.01 ps and 1–25 ps. The uncertainty in τ
based on a 5% range of best-fit quality-of-fit parameter is�0.2 ps
(see Supplemental Material [20,25]). The uncertainty in α is
�0.04 except for t ≥ 23 ps shown as error bars.
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where P2ðxÞ is the second-rank Legendre polynomial, and a
is the intramolecular 1H─1H distance. Critical to an accurate
determination of R1 is the choice of a. Sawyer [28] has
proposed that, for NMR applications, a ¼ hr−3HHi−1=3 recog-
nizing the r−3 distance dependence of the dipolar inter-
action. A summary discussion in Supplemental Material
[20,26,27,29–33] justifies a ¼ 0.1545� 0.0007 nm.
The spectral density function JðωÞ is the Fourier trans-

form of the dipolar correlation function,

JðωÞ ¼ 2

Z
∞

0

GðtÞ cos ωt dt; ð3Þ

and the longitudinal relaxation rate is expressed as [1]

R1 ¼
1

5
βII½JðωÞ þ 4Jð2ωÞ�; ð4Þ

where ω is the Larmor frequency of a 1H spin in the
applied static field, βII ¼ ðμ0=4πÞ2γ4I ℏ2IðI þ 1Þ, γI is
the proton gyromagnetic ratio, and I ¼ 1

2
. For water

βII ¼ 4.275 × 1011 m6 s−2.
The spin-lattice relaxation rate R1 is computed directly

from the values of α and τ. Contributions beyond 20 ps are
found to be negligible indicating that only dynamics with
time constants less than 20 ps contribute to the relaxation
rate in water. Therefore, the numerical values of α and τ
presented in Fig. 3 for times 1–20 ps are used directly with
GðtÞ at intermediate times obtained by quadratic interpo-
lation. R1;intra is computed using Eqs. (2)–(4).
We find R1;intra ¼ 0.183 s−1 and is independent of

frequency over the range 1 kHz–40MHz. The experimental
value of R1 is 0.280 s−1 at 28 MHz and at room temper-
ature [8] so that R1;intra=R1 ¼ 0.65. The uncertainties in the
dynamical time constants and their impact on R1;intra are
assessed in Supplemental Material [20,36–38]. Time con-
stants for specific motions may differ from experiment by
up to 20% but the single τ used here encompasses all
dynamics that contribute over a time interval. It is argued
that a reasonable estimate of the overall uncertainty of the
flexible SPC/E force field to reproduce τ is �10%. The
value of τ in Fig. 3 is changed by �10% to obtain
R1;intra=R1 ¼ 0.65� 0.07.
The first estimation of the intramolecular contribution to

R1 in the 1960s treated a molecule as a rotating sphere in a
viscous fluid concluding that the intramolecular contribu-
tion was approximately 50% of the total rate [1,43]. The
most recent comparable work is by Calero and co-workers
[34] who determined R1 from MD simulations of water
using four different intra- and interatomic force fields.
Force field TIP4P=2005 yielded the best estimate of R1 at
room temperature for which R1;intra=R1 ¼ 0.67. Calero
et al. determine both R1;inter and the diffusion coefficient
from MD simulation. Their diffusion coefficient is 13%
lower than the experimental value [35]. It is calculated in

Supplemental Material that, if their MD simulations had
yielded the experimental diffusion coefficient, this would
yield R1;intra=R1 ¼ 0.65. Calero’s overall value for R1 is 6%
lower than the experimental value. The relaxation rate
scales as a−6 and this remaining error is probably asso-
ciated with the quality of the TIP4P=2005 force field to
reproduce the 1H─1H distance.
In summary, the key result is Eq. (1) which provides the

first description of an anomalous (Lévy) rotor. Equation (1)
may be used to model rotational dynamics of pairs of atoms
in molecular liquids, molecules with restriction motion
such as biomolecules or proteins, and aqueous ionic
complexes. Equation (1) is shown to provide an excellent
description of the rotational dynamics of the intramolecular
1H─1H vector in water. Water is found to be a highly
anomalous diffuser over timescales t ≤ 25 ps due to H-
bond breaking and reforming with the distinction between
the Lévy and Brownian models diminishing for timescales
longer than 25 ps. The headline values for R1;intra=R1

obtained here and from Calero et al. (corrected) are
identical, despite different methods of calculation, and
found to be 65%� 7%.
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1966 (2015).

[35] K. Krynicki, C. D. Green, and D.W. Sawyer, Faraday
Discuss. Chem. Soc. 66, 199 (1978).

[36] L.-P. Hwang and J. H. Freed, J. Chem. Phys. 63, 4017
(1975).

[37] K. Toukan and A. Rahman, Phys. Rev. B 31, 2643
(1985).

[38] M. Praprotnik, D. Janežič, and J. Mavri, J. Phys. Chem. A
108, 11056 (2004).

[39] P. Mark and L. Nilsson, J. Phys. Chem. A 105, 9954 (2001).
[40] S. Plimpton, LAMMPS Molecular Dynamics Simulator avail-

able online at https://lammps.sandia.gov/ (accessed April
2021).

[41] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
[42] D. E. Moilanen, D. Wong, D. E. Rosenfeld, E. E. Fenn,

and M. Fayer, Proc. Natl. Acad. Sci. U.S.A. 106, 375
(2009).

[43] L. D. Favro, Phys. Rev. 119, 53 (1960).

PHYSICAL REVIEW LETTERS 127, 256001 (2021)

256001-5

https://doi.org/10.1039/C6CP02195F
https://doi.org/10.1039/C6CP02195F
https://doi.org/10.1016/S0079-6565(01)00036-X
https://doi.org/10.1016/S0079-6565(01)00036-X
https://doi.org/10.1063/1.479652
https://doi.org/10.1063/1.479652
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.256001
https://doi.org/10.1016/j.physa.2006.11.008
https://doi.org/10.1088/0022-3719/7/18/021
https://arXiv.org/abs/2109.05610
https://doi.org/10.1080/00268978200100351
https://doi.org/10.1021/jp902690k
https://doi.org/10.1021/jp902690k
https://doi.org/10.1080/00268979100101071
https://doi.org/10.1088/0953-8984/12/12/303
https://doi.org/10.1088/0953-8984/12/12/303
https://doi.org/10.1246/bcsj.20180205
https://doi.org/10.1016/0009-2614(78)85690-5
https://doi.org/10.1016/0079-6565(93)80007-G
https://doi.org/10.1016/0079-6565(93)80007-G
https://doi.org/10.1021/jp510013q
https://doi.org/10.1021/jp510013q
https://doi.org/10.1039/dc9786600199
https://doi.org/10.1039/dc9786600199
https://doi.org/10.1063/1.431841
https://doi.org/10.1063/1.431841
https://doi.org/10.1103/PhysRevB.31.2643
https://doi.org/10.1103/PhysRevB.31.2643
https://doi.org/10.1021/jp046158d
https://doi.org/10.1021/jp046158d
https://doi.org/10.1021/jp003020w
https://lammps.sandia.gov/
https://lammps.sandia.gov/
https://lammps.sandia.gov/
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1073/pnas.0811489106
https://doi.org/10.1073/pnas.0811489106
https://doi.org/10.1103/PhysRev.119.53

