
Borromean Supercounterfluidity

Emil Blomquist , Andrzej Syrwid , and Egor Babaev
Department of Physics, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden

(Received 6 September 2021; accepted 12 November 2021; published 15 December 2021)

We demonstrate microscopically the existence of a new superfluid state of matter in a three-component
Bose mixture trapped in an optical lattice. The superfluid transport involving coflow of all three
components is arrested in that state, while counterflows between any pair of components are dissipation-
less. The presence of three components allows for three different types of counterflows with only two
independent superfluid degrees of freedom.
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The advent of optical lattices [1–6] allowed for highly
controllable access to strongly correlated quantum many-
body systems and opened up a way to realize various
phases of matter. One of the theoretical predictions was that
bosons in optical lattices could host a new type of transport
phenomenon called supercounterfluidity [7–16]. That is,
having two bosonic fields ψ1;2, in an ordinary case, one
finds a superfluid mixture when hψ1;2i reveals a (quasi)
long-range order. This state is predicted to appear [7–16]
when the averages of individual fields vanish, hψ1;2i ¼ 0,
but there is a (quasi) long-range order in the composite
field hψ1ψ

�
2i ≠ 0. Therefore, in a supercounterfluid phase,

individual bosonic species do not exhibit superfluidity,
but the transport of particle-hole composites is dissipation-
less. A similar type of order was predicted in super-
conducting systems arising from a different microscopic
origin [17–24]. For a general discussion, see [25]. Recently,
an experimental observation of a discrete-symmetry
counterpart of this type of order was reported in a three-
component superconductor [26]. In the two-component
case, the order parameter for the supercounterfluid is
partially similar to a condensate of bound particle-hole
pairs between two different components. However, the
three-component situation is more subtle. In this Letter, we
demonstrate microscopically the existence of a new “super”
state in a three-component Bose mixture.
At the superfluid hydrodynamic level, N-component

isotropic superfluid systems can in general be described
by the free-energy density f ¼ 1

2

P
α;β ραβvα · vβ. Here,

vα ¼ ∇θα=mα (ℏ ¼ 1) represents the superfluid velocity
of component α, where θα ∈ ½0; 2πÞ and mα denote super-
fluid phase and particle mass of the αth component,

respectively. In the presence of intercomponent inter-
actions, the superfluid stiffness tensor ρ will in addition
to the diagonal superfluid density elements ραα also contain
off-diagonal elements ραβ (α ≠ β), coupling the different
components [27]. This in turns has principal consequences
for the corresponding superflows jα ¼ ∂f=∂vα ¼ ρααvαþP

β≠α ραβvβ. Namely, the superflow of one component can
be induced by the flow of a different component. This
fundamental phenomenon is referred to as Andreev-
Bashkin drag [27]. The Andreev-Bashkin effect can be
well controlled in optical lattices [7,8,11,16,28–30]. Note
that in certain asymmetrical optical lattices there are addi-
tional terms responsible for transverse entrainment [31].
However, in this Letter, we will restrict ourselves to square
lattices where only the Andreev-Bashkin drag effect is
present.
In the simplest case of two components with identical

masses, the free-energy density can be cast into the
form associated with coflows and counterflows f ¼
ρ2ð∇θ1 þ∇θ2Þ2=4þ ρ0ð∇θ1 −∇θ2Þ2=4. Here, ρξ ¼ ρk þ
ðξ − 1Þρd ≥ 0 where ρk > 0 describe the prefactor of the
standard gradient term, and ρd—either positive or negative
—denotes the drag strength. When the drag is sufficiently
strong and negative, the cheapest topological excitations
become cocirculating composite vortices, i.e., vortices
where both phases θ1;2 wind by 2π around the core [25].
Thermal or quantum fluctuations can then lead to the
proliferation of these composite vortices—but not elemen-
tary ones—resulting in a phase transition to a super-
counterfluid (for a detailed discussion of the principle,
see, e.g., Chap. 6 in [25]). The composite vortices do not
induce gradients in the phase difference and thus do not
disorder the phase difference part of the free energy. The
free-energy density of the resulting state therefore only
involves the phase stiffness corresponding to the phase
difference, i.e., f ¼ ρ0ð∇θ1 −∇θ2Þ2=4. This term can be
interpreted as the kinetic free-energy contribution related
to the composite particle-hole order parameter ψ1ψ

�
2.
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Consequently, only counterflow dissipationless transport
can take place.
In a system with more than two components, states may

arise with no direct counterpart among two-component
superfluids. Let us therefore consider a two-dimensional
N-component symmetric quantum system, i.e., compo-
nents with identical masses and densities, and equal
Andreev-Bashkin drag strength ρd between each pair.
We start with a phase-only approximation assuming iden-
tical and homogeneous densities of unit mass particles
(mα ¼ 1) in each superfluid component. The corresponding
free-energy density reads

f ¼ ρk
2

X
α

ð∇θαÞ2 þ
ρd
2

X
α;β≠α

∇θα ·∇θβ

¼ ρN
2N

�X
α

∇θα

�
2

þ ρ0
4N

X
α;β

ð∇θα −∇θβÞ2; ð1Þ

where again ρξ ¼ ρk þ ðξ − 1Þρd ≥ 0. Now, when the drag
is strong and negative, i.e., when ρN ≪ ρ0, the cheapest
topological excitations are composite vortices where all N
phases wind by 2π with the same orientation. Consequently,
the proliferation of the three-component topological defects
leads to a state where the sum of three phases is disordered.
However, these composite vortices are unable to disorder
phase differences and the system retains N − 1 superfluid
modes. Equation (1) therefore reduces to f ∝

P
α;βð∇θα −

∇θβÞ2 and the corresponding phase is characterized by zero
net superflow, i.e.,

P
α jα ∝

P
α ∂f=∂ð∇θαÞ ¼ 0.

Consequently, for N > 2, the transport properties of the
new phase can be understood as a counterflow of two
components where the presence of the third symmetric
component allows for fluctuations in the type of counter-
propagating companions. One would anticipate that this
should be reflected in the world lines of the microscopic
path-integral formulation. That is, in different regions of the
system, one should find different types of particle-hole
paired world lines. Moreover, there is no superfluid coflow
of boundN particle states, while counterpropagation of any
two different components is dissipationless. Specifically,
for N ¼ 3 where α ∈ fr; g; bg, there are three types of
counterflows for which there are only two independent
degrees of freedom. That implies that we can have a
superfluid coflow of two components as long as their
combined flow is counteracted by the flow of the third
component, e.g., jr ¼ jg ¼ j and jb ¼ −2j. Here, we can
draw a distant analogy to the Borromean rings where three
rings are confined while each pair of rings is deconfined,
see Fig. 1. Hence, we coin this phenomenon Borromean
supercounterfluidity.
Below, we microscopically demonstrate that such a

superfluid state exists in a three-component (N ¼ 3)
Bose–Hubbard model [32].

Ĥ ¼ −t
X
α

X
hiji

b̂†iαb̂jα þ
U
2

X
α

X
i

n̂iαðn̂iα − 1Þ

þ U0

2

X
α;β≠α

X
i

n̂iαn̂iβ: ð2Þ

Here, b̂iα (b̂†iα) is the bosonic annihilation (creation)
operator of component α at site i, and n̂iα ¼ b̂†iαb̂iα is
the corresponding particle-number operator. Greek sub-
scripts label the component type, i.e., r (red), g (green), and
b (blue). The parameter t represents the hopping amplitude,
while U and U0, respectively, are the intracomponent and
intercomponent on-site interaction strengths. We will con-
sider a L × L square lattice with unit lattice constant and
periodic boundary conditions. We further analyze the two
separate cases where either the individual particle-number
densities are fixed, i.e., nα ≔ hPi n̂iαi=L2 ¼ 1=3, or the
total particle-number density is conserved, i.e.,

P
α nα ¼ 1,

while allowing for fluctuations in nα.
We numerically investigate the system by utilizing

worm-algorithm Monte Carlo [33–37]—a quantum
Monte-Carlo method which samples path-integral configu-
rations of the partition function in real space and imaginary
time. To extract the numerical values of ρk and ρd appearing
in the free-energy density, Eq. (1), we generalize Pollock
and Ceperley’s formula [16,31,38]: ρk ¼ Thw2

αi=2, and
ρd ¼ Thwα · wβi=2 where T is the temperature (kB ¼ 1)
and α ≠ β. The winding numberswα encode the net number
of times, and in which direction, α-type particles cross the
periodic boundaries. The notation h·i refers to the standard
statistical Monte Carlo average.
The calculated coefficients ρk, ρd, and their ratios ρd=ρk

are presented in Fig. 2 as functions of t=U for the
interaction strengths U ¼ 1 and U0 ¼ 0.9. For small t=U
we observe ρk ¼ ρd ¼ 0, which indicates a Mott insulating
phase. However, at t=U ≳ 0.02 the system enters the
Borromean supercounterfluid phase, where ρd=ρk rapidly
saturates at the value−1=2 for which the coefficient ρN¼3 in
Eq. (1) vanishes. This result demonstrates that the corre-
sponding effective free-energy density is given by gradients
of phase differences between all the three components.

FIG. 1. The Borromean rings. If a single ring is removed, the
two remaining ones will become unlinked.
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When further increasing t=U ≳ 0.05, the system undergoes
a second transition to the three-component superfluid phase
where the Uð1Þ ×Uð1Þ × Uð1Þ symmetry is broken. Deep
in this regime ρd=ρk becomes very small.
Let us now characterize the absence of phase separation

in the system. Namely, suppose the system spontaneously
forms bound pairs between two components only, and one
relaxes the restriction on individually fixed particle num-
bers nα. In that case, a disproportion between the compo-
nents’ particle densities is expected. To that end, we
investigate the density imbalance Δn defined through

hn̂rn̂gn̂bi ¼ ð1=3 − 2ΔnÞð1=3þ ΔnÞ2; ð3Þ

while constraining the total particle-number density to
nr þ ng þ nb ¼ 1, and leaving nα unrestricted such that
only on average hn̂αi ¼ 1=3. Here, n̂α ¼

P
i n̂iα=L

2. If the
particles of one component are completely exchanged in
favor of particles belonging to the other two components,
then hn̂rn̂gn̂bi ¼ 0 leading to Δn ¼ 1=6. Similarly, if two
components are completely expelled then Δn ¼ −1=3. In
contrast, if there is no density imbalance and all compo-
nents are equally represented one should have hn̂rn̂gn̂bi ¼
ð1=3Þ3 such that Δn ¼ 0. In Fig. 3(a) we demonstrate a
decay of Δn with increased system size L and inverse
temperature β in the regime of the anticipated Borromean
supercounterfluid phase. As expected, we find a nonzero
Δn at finite temperatures due to thermal density fluctua-
tions, however, the magnitude of Δn is small in comparison
to 1=3. In addition,Δn show a clear decay with increased L
indicating Δn → 0 for L → ∞. This is further corroborated
in Figs. 3(b) and 3(c) by real-space particle-number

distributions obtained from two representative imaginary-
time slices of the world-line configurations. This demon-
strates that there is no density imbalance nor phase
separation in the ground state.
The Borromean supercounterfluid phase can be further

studied by inspecting typical partition function world-line
configurations sampled with the help of the worm-
algorithm Monte Carlo method. A representative configu-
ration of the Borromean superfluid phase is illustrated in
Fig. 4, which indeed reveals three mixed components. The
net flow of particles in imaginary time further exhi-
bits the counterflowlike behavior, resulting in the winding
numbers hw2

αi ≠ 0 and hðPα wαÞ2i ¼ 0, or alternatively
ρd=ρk ¼ −1=2.

FIG. 2. The superfluid density ρk (triangles), the Andreev-
Bashkin drag-coefficient ρd (diamonds), and the ratio ρd=ρk
(inset) as a function of t=U. For t=U ∈ ½0.02; 0.05� the ratio ρd=ρk
saturates to its lower bound, −1=2, which indicates the presence
of the Borromean supercounterfluid phase. The computations
were performed using U ¼ 1, U0 ¼ 0.9, T ¼ t=L, L ¼ 12, 18,
and a fixed particle-number density nα ¼ 1=3.

(a)

(b) (c)

FIG. 3. In panel (a) the particle-number-density imbalance Δn,
Eq. (3), is plotted versus the system size L for various parameter
values t=U with the inverse temperature given by β ¼ L=t. The
total particle-number-density nr þ ng þ nb ¼ 1 is fixed while the
particle number of each of the three symmetric components is
allowed to fluctuate. The plot reveals a decay of Δn with
increasing L. The latter is more apparent in the inset which
presents Δn for the largest L’s on logarithmic scales. This shows
that Δn → 0 as L → ∞. The bottom panels present two repre-
sentative real-space particle-number distributions, i.e., imaginary-
time slices of the world-line configuration, with L ¼ 60 for
t=U ¼ 0.02 (b) and t=U ¼ 0.05 (c). The three different compo-
nents are represented by the colors red, green, and blue,
respectively. The darker the color, the fewer the particles
occupying the corresponding site such that an empty site becomes
black. These particle-number distributions clearly display a
miscible phase which is corroborated by Δn of panel (a). In
all cases the values U ¼ 1 and U0 ¼ 0.9 were used.
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In conclusion, we have demonstrated microscopically
that a strongly correlated three-component bosonic mixture
—realizable in optical lattice setups—has a phase with
“super” transport phenomenon different from conventional
superfluidity. In this phase, the simultaneous coflow of all
three bosonic components is arrested, while the system
retains dissipationless counterflows between any pair of
components. These three counterflows are not independent
but rather described by two superfluid degrees of freedom.
At the microscopic level, the types of counterpropagating
partners can vary.
Possible realization of these states in optical lattices

could be obtained by trapping mixtures of bosonic isotopes
of Na and K. Possible ways to detect the Borromean
supercounterfluid state experimentally is through tilting the
lattice and detecting the ratio between transport of different
individual components. However, the more striking sig-
nature can be obtained by observing a dramatic change in
the system’s rotational response. Namely, a rotating con-
ventional superfluid can be described by introducing a
fictitious vector potential Θ, leading to a vortex lattice

formation (see, e.g., Chap. 1 in [25]). In the Borromean
supercounterfluid state the vector potentialΘ couples to the
phase gradients through mass differences according to
f ≈

P
α;β≠α½∇θα −∇θβ − ðmα −mβÞΘ�2. If all the compo-

nents have equal particle masses, i.e., mα ¼ mβ, the system
is unaffected by rotation. Indeed, in that case, the counter-
flow involves no mass transfer, and vortices carry no
angular momentum. On the other hand, if mα ≠ mβ the
system forms a vortex lattice to compensate for the
superextensive increase of the free energy due to the
rotation. In the latter case, the critical velocities and number
of rotation-induced vortices will be proportional to the
mass difference mα −mβ rather than to masses of individ-
ual components.
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