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We characterize the mechanisms of vortex pinning in a superfluid thin film described by the two-
dimensional Gross-Pitaevskii equation. We consider a vortex “scattering experiment” whereby a single
vortex in a superfluid flow interacts with a circular, uniform pinning potential. By an analogy with linear
dielectrics, we develop an analytical hydrodynamic approximation that predicts vortex trajectories, the
vortex fixed point and the unpinning velocity. We then solve the Gross-Pitaevskii equation to validate this
model, and build a phase portrait of vortex pinning. We identify two different dynamical pinning
mechanisms marked by distinctive phonon emission signatures: one enabled by acoustic radiation and
another mediated by vortex dipoles nucleated within the pin. Relative to obstacle size, we find that pinning
potentials on the order of the healing length are more effective for vortex capture. Our results could be
useful in mitigating the negative effects of drag due to vortices in superfluid channels, in analogy to
maximizing supercurrents in type-II superconductors.
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Introduction.—The pinning of topological defects plays
an important role in many physical and biological systems
including cardiac muscle [1,2], active matter [3], and liquid
crystals [4]. In quantum fluids, such as superfluids and
superconductors, the defects are quantized vortices. Their
pinning and unpinning from potential barriers is crucial in
determining the breakdown of dissipationless superflow [5].
For example, vortex pinning is important for preventing flux
creep in high-Tc superconductors [6–8], corrections to the
Berezinskii-Kosterlitz-Thouless transition in thin-film He-II
[9–11], and manipulating flows in atomtronic devices [12–
14]. Beyond these lab-based systems, sudden rotation
“glitches” observed in neutron stars are hypothesized to
involve an abrupt “avalanche” of vortices unpinning en
masse from the star’s outer crust [15–17]. Further, the recent
achievement of room-temperature superfluids [18] has stimu-
lated interest in harnessing superfluidity in future quantum
technologies such as low-energy transistors [19]. Similar to
superconductors, a better understanding of vortex pinning
may allow for enhanced superfluid critical currents.
While vortex nucleation is well understood in terms of

Landau’s critical velocity [20–23], the subsequent mech-
anisms for vortex pinning and unpinning still lack a
complete theoretical description. For finite temperature
systems which can be modeled by, e.g., Ginzburg-
Landau equations [3,8] or two-fluid models [24], a vortex
will be gradually attracted to a (stable) dynamical fixed
point through the dissipative action of the normal fluid
component. However, this cannot explain how pinning
occurs in a pure superfluid with minimal thermal friction, a
regime in which experiments now routinely operate [25–
28]. This poses the question: What are the microscopic
mechanisms for vortex pinning in a pure superfluid system?

In this Letter, we theoretically and numerically study
vortex pinning via a vortex “scattering experiment” within
a zero temperature superfluid, where a single vortex
interacts with a circular pinning potential [Fig. 1]. We
develop an analytical hydrodynamic approximation to
describe the vortex dynamics, finding excellent agreement
with Gross-Pitaevskii simulations at low velocities. At
higher velocities, we identify two mechanisms of vortex
pinning, which are clearly distinguished by the acoustic
energy signals produced during the pinning process.
Finally, we construct a phase diagram of the pinning
process and find that larger obstacles are comparatively
ineffective for vortex capture relative to their size.
Model.—Weconsider aweakly interactingBosegas descri-

bed by the Gross-Pitaevksii equation (GPE) iℏ∂tψðr; tÞ ¼
δH=δψ� with Hamiltonian

H¼
Z

dr

�
ℏ2

2m
j∇ψðr; tÞj2þVðrÞjψðr; tÞj2þ g

2
jψðr; tÞj4

�
;

ð1Þ

FIG. 1. Vortex scattering: A superfluid with background den-
sity ρ0 flows uniformly with velocity vx. Embedded in the flow is
a single vortex initially located at ðx0; y0Þ. It encounters a circular
pinning potential of radius R at the origin with density ρ1 < ρ0.
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where g characterizes the repulsive particle interactions andm
is the particle mass. We assume tight confinement along the z
axis such that the problem effectively becomes two dimen-
sional [29,30]. The superfluid flows along the x directionwith
background velocity vx, past a stationary pinning potential
VðrÞ ¼ V0ð1þ tanh ½ðR − jrjÞ=w�Þ=2, with strength V0,
radius R, and boundary width w ≪ R. A vortex is initialized
at r0 ¼ ðx0; y0Þ, where y0 defines the impact parameter of the
scattering problem [Fig. 1].
Hydrodynamic approximation.—We first consider a

hydrodynamic approximation for the vortex dynamics.
This approach is valid for large (R ≫ ξ) and weak pins
(V0 ≪ μ), and slow velocities (vx ≪ c), where ξ ¼
ℏ=

ffiffiffiffiffiffiffi
mμ

p
is the healing length, μ ¼ n0g is the chemical

potential, and c ¼ ffiffiffiffiffiffiffiffiffi
μ=m

p
is the speed of sound.

Under the Madelung transformation ψðrÞ ¼ ffiffiffiffiffiffiffiffiffi
ρ=m

p
eiΦ,

the GPE can be recast to hydrodynamic equations gov-
erning the superfluid density ρðrÞ and velocity field uðrÞ ¼
ℏ∇Φ=m with phase ΦðrÞ [30]. The dynamics of a single
(positive) vortex are then expressed exactly in terms of the
phase and density gradients [31,32]

_r0 ¼ uΦ þ uρ ≡ ℏ
m

�
∇Φjr0 −

1

2
ẑ × ∇ ln ρjr0

�
: ð2Þ

The gradients are evaluated at the vortex position, neglect-
ing the (singular) self-contribution. A steady flow with
_r0 ¼ 0 must satisfy the mass continuity and vorticity
quantization conditions

∇ · J ¼ 0; ð∇ × uÞz ¼ Γδðr − r0Þ; ð3Þ

where JðrÞ≡ ρðrÞuðrÞ and Γ≡ h=m is the quantum of
circulation. For R ≫ w≳ ξ, we may neglect the density
gradients far from the obstacle boundary, and approximate
the density as a step function, ρðrÞ ¼ ρ0 for r > R and
ρðrÞ ¼ ρ0ð1 − V0=μÞ for r < R. Because of the two-
dimensional nature of the problem, it may be solved by
a direct correspondence with electromagnetism; defining
D ¼ −ẑ × u, E ¼ −ẑ × J=ρ0, and εðrÞ ¼ ρ0=ρðrÞ with
DðrÞ ¼ εðrÞEðrÞ, Eqs. (3) take the same form as
Maxwell’s equations in linear dielectric media. The inverse
density assumes the role of the relative permittivity, and
vorticity that of the free charge [33]. The imposed flow
corresponds to the displacement field for a dielectric
cylinder within a uniform electric field. Thus, the imposed
background flow is uim ¼ ℏ∇Φim=m, where

ℏ
m
Φimðr; θÞ ¼

8<
:

2ϒvx
ðϒþ1Þ r cos θ; r < R;

vx
�
1þ ϒ−1

ϒþ1
R2

r2

�
r cos θ; r ≥ R;

ð4Þ

where ϒ ¼ ρ0=ρ1. The flow is uniform inside the
obstacle and enhanced from the background value vx by
2ϒ=ðϒþ 1Þ ≥ 1. Outside, the result is similar to the

solution for an impenetrable cylinder, which is recovered
as ϒ → ∞.
The velocity due to the vortex-pin interaction may be

solved via the method of images. The solution is [34]

ℏ
m
∇Φv ¼ uvðrÞ ¼ −

Γ
2π

�
ϒ − 1

ϒþ 1

��
1

d
−
Θðr − RÞ

r

�
θ̂; ð5Þ

where θ̂ is the unit azimuthal vector, dðr; RÞ ¼ jR2 − r2j=r
is the distance from the vortex to its image located at the
inverse point r̄ ¼ R2r=jrj2, and ΘðxÞ is the Heaviside step
function. While Eq. (5) diverges at r ¼ R due to neglecting
the vortex core, this may be remedied by the replacement
d →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ δ2

p
. The phenomenological screening para-

meter δ is expected to be δ≳ ξ, limiting the induced
velocity to juvj < c, as required for a fluid of finite
compressibility [39].
Pinning is enabled by the existence of a fixed point rf,

where uimðrfÞ þ uvðrfÞ þ uρðrfÞ ¼ 0. The fixed point is
located at rf ¼ 0 when vx ¼ 0. As vx increases jrfj will
approach R, and eventually vanish, causing the vortex to
unpin. Since this occurs when jrfj ≈ R, both density and
phase gradients are important. Provided w≳ ξ, then uρ

may be approximated using the Thomas-Fermi solution
ρðrÞ ¼ ρ0½1 − VðrÞ=μ�. The largest density contribution,
max½uρðrÞ�, occurs at r ¼ Rþ w logð1 − V0=μÞ1=4 ≈ R,
while max½uvðrÞ� occurs at exactly r ¼ R. Within a
logarithmic correction, we set _r0 ¼ 0 at rf ¼ ðR;−π=2Þ
to obtain the critical unpinning velocity

uc ¼
Γ
4π

�
2wþ δ

2wδ

�
V0

μ
: ð6Þ

Notably, uc is independent of R.
Since the density and image contributions both act to

counteract the imposed flow, in Eq. (6) the term in pare-
ntheses may be interpreted as a reduced, effective screening
parameter, δeff ¼2wδ=ð2wþδÞ. Phenomenologically abso-
rbing the density contributions into the effective screening
δeff , we may obtain a closed form solution for the fixed
point rf against velocity. Balancing Eqs. (4) and (5) gives
rf ¼ ðrf; θfÞ, with θf ¼ −π=2 and

rf ¼
1

2

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2þ

�
ΓV0

4πvxμ

�
2

− δ2eff

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΓV0

4πvxμ

�
2

− δ2eff

s )
:

ð7Þ

Equation (7) bears a resemblance to the stagnation point
solution in the classical Magnus effect [40]. Notice that
Eq. (7) produces the same critical velocity as Eq. (6) (real
solutions vanish above uc).
The preceding (static) analysis may be applied to

determine the vortex dynamics from Eq. (2) provided
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the velocities are small. Figure 2(a) shows excellent agree-
ment between the hydrodynamic approximation for vortex
trajectories and numerical GPE solutions for an example
obstacle (for numerical methods, see Ref. [35]). The
trajectories are asymmetric in y and may be open or closed
depending on the initial location of the vortex. Within the
hydrodynamic approximation, the open and closed

trajectories do not overlap; the vortex is thus only pinned
if it is initialized on a closed trajectory inside the pin.
Figure 2(b) compares the unpinning velocity uc deter-

mined by GPE simulations [35] to the predictions of
Eq. (6). We find good agreement between the two for a
fixed value δ ¼ 4.5ξ. The agreement is excellent for
w=ξ ∼ 2–3, where the assumption ξ≲ w ≪ R is valid,
but poorer for w ¼ ξ due to a breakdown of the
Thomas-Fermi approximation; however, maintaining δ ¼
4.5ξ and replacing w → weff ≈ 1.2ξ, yields excellent agree-
ment (equivalent to δeff ≈ 1.56ξ, dashed line).
In Fig. 2(c) we compare the location of the fixed point rf

against the prediction Eq. (7). By scaling the background
velocity with the strength of the pinning potential, the data
collapse onto a single curve, with δeff ≈ 1.5ξ. The results
begin to deviate for V0 ¼ 0.9μ, where the assumption
V0 ≪ μ is no longer valid [35]. The value δeff ¼ 1.5ξ
obtained in Fig. 2(c) is in good agreement with the best-fit
observed slope of uc determined in Fig. 2(b) (δeff ¼ 1.56ξ).
Transition to pinning.—The hydrodynamic approach

explains the conservative vortex trajectories and the mecha-
nism for vortex unpinning. However, it cannot describe the
dynamics of vortex pinning, where a vortex transitions
from an open trajectory to a closed trajectory. We have
therefore numerically simulated vortex scattering using the
GPE over a wide range of parameters to identify how
pinning occurs. To understand the dynamics of pinning, we
consider the energy exchange in the system. Equation (1)
may be written as H ¼ Ekin þ Epot þ Eint describing the
kinetic, potential, and interaction energies, respectively.
The kinetic term may be further decomposed into incom-
pressible and compressible components [41]; the incom-
pressible part is associated with vortices, while the
compressible part is due to sound waves [30].
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FIG. 2. Hydrodynamic theory and GPE comparison. (a) Vortex
trajectories in the hydrodynamic theory (solid, black) and
GPE (dashed, red) with vx ¼ 0.1c, V0 ¼ 0.7μ, and R ¼ 10ξ.
(b) Unpinning velocity uc vs obstacle strength V0 for boundary
widths w; solid lines show Eq. (6) with δ ¼ 4.5ξ and R ¼ 20ξ.
Dashed line shows the correction w → weff ¼ 1.2ξ. (c) Fixed
point radius rf vs scaled flow velocity for R ¼ 20ξ and w ¼ ξ.
Points: GPE solutions; line: Eq. (7) with δeff ¼ 1.5ξ.

Vortex Annihilation
Antivortex Creation

Fall onCons. Too fast

Pair creat.Cons.
Too fast

JR soliton

FIG. 3. Regimes of vortex pinning and scattering for a pinning potential of radius R ¼ 4ξ and strength V0 ¼ μ (w ¼ 2):
(a) Conservative, (b) fall-on, (c) pair creation, and (d) too fast, (see text). (i) Superfluid density at the end of the simulation. Markers
show positions of vortices (orange circles) and antivortices (blue triangles) at equally spaced times in the dynamics. For simulation
movies, see Supplemental Material [35]. (ii) Corresponding energy exchange curves vs time for the simulations shown in (i). Vertical
dashed lines indicate an annihilation event. For clarity, only the most relevant energy curves are displayed. Note the total energy is
conserved. (e),(f) Change in compressible (blue squares) and incompressible (green diamonds) kinetic energy vs vx for impact factors
(e) y0 ¼ −3ξ and (f) y0 ¼ 0ξ. Solid points: vortex capture; hollow points: no capture.
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We find that vortex scattering can be broadly classified
into four regimes, characterized by different vortex trajec-
tories and signatures of energy exchange. Examples of each
regime are shown in Fig. 3 for an obstacle with R ¼ 4ξ and
V0 ¼ μ. Figures 3(a)–3(d), i show typical vortex trajecto-
ries, while Figs. 3(a)–3(d), ii show the salient features of
energy exchange. Note the total energy is conserved in the
simulations.
1. Conservative (no pinning). For a low background

velocity vx ¼ 0.1c and y0 ¼ 0, the vortex moves quasia-
diabatically around the pinning potential [Fig. 3(a),i]. The
trajectories qualitatively follow the hydrodynamic curves
[Fig. 2(a)] and there is a near-reversible exchange between
the energy components [Fig. 3(a),ii]. A small amount of
energy is irreversibly lost to acoustic radiation, which
slightly deflects the vortex from its hydrodynamic trajec-
tory. This loss reduces as vx decreases; for sufficiently low
vx, no pinning occurs regardless of initial conditions.
2. Fall-on (pinning). For the same background velocity

(vx ¼ 0.1c) but a sufficiently negative impact parameter
(y0 ¼ −4ξ), the vortex falls onto the pinning potential and
enters a closed orbit [Fig. 3(b),i]. The fall-on is accom-
panied by an exchange between incompressible (vortex)
and compressible (sound) kinetic energies [Fig. 3(b),ii].
The occurrence of this regime, which strongly depends on
the value of y0, can be understood from the trajectories of
the hydrodynamic theory [Fig. 2(a)]. For −R≲ y0 < 0, the
trajectories exhibit high curvature implying a large accel-
eration. Similar to point charges, the energy radiated as
sound by a line vortex is proportional to its acceleration
[42]. These highly curved trajectories produce sufficient
radiation to deflect the vortex onto a pinned orbit.
3. Pair creation (pinning). At larger velocities pinning

may occur by a qualitatively different process. As shown in
Fig. 3(c),i for vx ¼ 0.2c and y0 ¼ 0, the incident vortex can
induce the formation of a vortex-antivortex pair within the
pinning potential as it approaches. The incident vortex then
annihilates with the spawned antivortex, marked by a larger
and more rapid burst of sound energy [Fig. 3(c),ii] than the
fall-on regime. The pinned vortex is not the original vortex,
but the (same-sign) vortex which spawned inside the
pinning potential [Fig. 3(c),i].
4. Too fast (no pinning). For sufficiently large vx (but

vx < ucrit), pinning is no longer possible. The process of
pair creation still occurs, but insufficient energy is radiated
for the remaining vortex to be pinned and it instead escapes
into the bulk [Fig. 3(d),i], recovering incompressible
energy [Fig. 3(d),ii]. The acoustic pulse generated by the
annihilation does not always disperse into ordinary pho-
nons; in some cases, it creates a localized, nonlinear sound
pulse, known as a Jones-Robert soliton [39] [Fig. 3(d),ii].
The fall-on and pair creation mechanisms are quantita-

tively distinct in terms of their acoustic emission signatures.
In Fig. 3, we show the change in the compressible and
incompressible kinetic energies against vx for the impact

parameters (e) y0 ¼ −3ξ and (f) y0 ¼ 0ξ, which exhibit the
fall-on and pair creation pinning regimes, respectively. In
the fall-on regime [Fig. 3(e)], increasing vx reduces the
curvature of the vortex trajectories [cf. Fig. 2(a)] as the
imposed flow dominates over the velocities induced by the
pin. The amount of acoustic radiation therefore decreases
with increasing velocity, until the amount emitted is no
longer sufficient to deflect the vortex onto a pinned
trajectory. By contrast, the threshold velocity for pair
creation is larger than for fall-on, and the acoustic energy
production is nearly constant in vx [Fig. 3(f)]. At the
transition to the “too fast” regime in both instances, the
vortex fixed point exists, but within the boundary layer.
Pinning thus becomes increasingly difficult as phonons can
easily knock the vortex into the bulk.
Finally, in addition to vx and y0, the pinning dynamics

also strongly depend on the pinning potential parameters.
In Fig. 4 we plot the pinning phase diagram as a function of
vx and y0 for the potential radii R ¼ f4; 20gξ and strengths
V0 ¼ f0.7; 1.0gμ. The phase diagrams show that only a
finite range of velocities lead to pinning. At low vx, a vortex
can become pinned even when the impact parameter
exceeds the pinning potential radius, i.e., y0 < −R
[Fig. 4(a)]. The y0 < 0 region of parameter space is
dominated by the “fall-on” regime due to the large
curvature of trajectories. Conversely, vortices approaching
from y0 > 0 may only become pinned via the pair creation
mechanism as described above. This distinction can be
understood in terms of a destructive (y0 < 0) and con-
structive (y0 ≥ 0) vector sum of the vortex velocity field
and the imposed flow field (see Ref. [35]).
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FIG. 4. Vortex pinning phase diagrams as a function of impact
factor y0 and background superfluid velocity vx for pinning
potentials with R=ξ ¼ f4; 20g (columns) and V0=μ ¼ f0.7; 1g
(rows), respectively. The shaded regions represent pinning
regimes (left y axis) and the gray lines represent the initial
superfluid density along x ¼ 0 at the location of the pinning
potential (right y axis).
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For V0 < μ, increasing V0 significantly increases the
likelihood of pinning [43]. The reduced superfluid density
inside the pinning potential lowers the energy cost for pair
creation, allowing it to occur over a wider range of
parameters [Fig. 4(c), cf. Fig. 4(a)]. Further, we find that
pinning potentials of smaller radii have a larger capture area
relative to their size—for large radii, pinning does not occur
at any V0 for y0 > 0 [Figs. 4(b) and 4(d)]. While large radii
potentials provide a deep energy minimum [35], the pinned
vortex states are less accessible dynamically; the larger
radius vortex trajectories have a smaller acceleration and
hence radiate less energy as sound, meaning that a
relatively smaller region of phase space leads to pinning.
Conclusions and outlook.—We have considered the

scattering of a quantized vortex off a repulsive pinning
potential in a superfluid thin film. The hydrodynamic
approximation describes the low velocity trajectories, as
well as the location of the vortex fixed point and the
unpinning velocity. Our predictions could be readily tested
in ultracold atom experiments employing configurable
optical potentials [44]. Radially inhomogeneous pins,
which may be considered by analogy with antennae and
waveguides in the dielectric analogy [45,46], could give
different density and phase contributions that may lead to
more effective pinning.
The GPE simulations identified two distinct pinning

mechanisms, each marked by a characteristic emission of
sound energy. In the pinning phase diagram we found that
strong yet small radii potentials have a larger capture area
compared to their size, being able to capture vortices at both
positive and negative impact parameters. This may have
important implications for devices utilizing superfluid
helium thin films [28,47], where ξ ∼ 1 Å. Our results
suggest that atomic defects may be superior pins to
fabricated, microscale defects; an array of small pins
may prove more effective than a large pin occupying the
same area. Like in superconducting devices, superfluid
vortex pinning will likely play an important role in
capturing free vortices and suppressing the breakdown of
lossless flow in devices leveraging superfluidity.
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