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Topological properties of physical systems play a crucial role in our understanding of nature, yet their
experimental determination remains elusive. We show that the mean helicity, a dynamical invariant in ideal
flows, quantitatively affects trajectories of fluid elements: the linking number of Lagrangian trajectories
depends on the mean helicity. Thus, a global topological invariant and a topological number of fluid
trajectories become related, and we provide an empirical expression linking them. The relation shows the
existence of long-term memory in the trajectories: the links can be made of the trajectory up to a given time,
with particles positions in the past. This property also allows experimental measurements of mean helicity.
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In recent years, broken symmetries and topology have
played an increasing role in physics. Examples are topo-
logical phase transitions [1], topological charges in con-
densed matter [2], applications in quantum field theory [3],
electromagnetism [4], DNA [5], and chromosome organi-
zation [6]. In fluid dynamics, three-dimensional (3D)
barotropic flows have an ideal invariant of topological
nature. Helicity, the inner product between the Eulerian
velocity u and the vorticity ∇ × u, integrated over the fluid
volume V,H ¼ V−1 R u · ð∇ × uÞdV, is proportional to the
Gauss linking number of vorticity field lines [7,8], and
measures their linkage and knottedness. Helicity is the only
integral invariant of volume-preserving transformations [9].
Moreover, its presence indicates the flow has no mirror
symmetry (i.e., it is chiral). Helicity is relevant in astro-
physical [10–13] and geophysical flows [14–16], in super-
fluids and Bose-Einstein condensates [17–22], and in
swirling [23] and rotating [24] flows. In active fluids, it
can generate a helicity-driven inverse energy cascade (i.e., a
self-similar transfer of energy to larger scales) [25]. In
turbulence, the symmetry breaking introduced by nonzero
helicity affects the statistical properties of the energy
cascade, and leads to strongly depleted energy transfers
between scales [8,26], or to a change in the energy transfer
direction [25,27].
Characterizing the topology of a vector field from a

discrete set of measurements constitutes a cross-cutting
challenge concerning several areas, such as surface
reconstruction, deep learning, time series classification,
and chaotic attractor embeddings [28]. In fluid dyna-
mics, helicity, although theoretically appealing, is hard

to measure. Experimental estimations employ pointwise
measurements of velocity and vorticity (which are incom-
plete as helicity is a global quantity), or use linking
numbers in flows simple enough that vorticity field lines
can be identified [29,30]. Helicoidal particles were also
devised to estimate local flow chirality [31]. Despite these
attempts, measurements in the fully turbulent regime
remain difficult, resulting in discussions on its conservation
[32,33].
Here, we show that the broken mirror symmetry associ-

ated with helicity affects the connectivity of fluid elements
trajectories, generating linkages between their long-time
history. This is accomplished by combining simulations of
homogeneous and isotropic turbulence (HIT) and of
Taylor-Green (TG) flows at different Reynolds numbers,
with laboratory experiments of mirror-symmetric HIT and
of chiral von Kármán (VK) flows. The robustness of the
results allows us to define a new volumetric measurement
of helicity using the particle linking number, providing
access to global quantification of helicity in experiments.
Definition of the linking number of fluid elements

trajectories.—Does the number of links between tracers’
trajectories constitute a proxy of the helicity of the under-
lying flow? Particles’ trajectories do not form, in general,
closed loops. Even if some closed orbits exist under
artificial (e.g., periodic) boundary conditions, laboratory
measurements extend for a finite time and consist of short
trajectories, spanning from a fraction to a few flow corre-
lation times, so there is no notion of knottedness. Still, we
can define an average linking number between any set
of 3D curves as the mean value of the signed apparent
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crossings in a P number of two-dimensional (2D) projec-
tions. We thus consider a time interval ΔT over which we
have measurements, and N tracer trajectories that sample
the flow during this interval. To compute the total number
of signed crossings, we project the curves onto P differ-
ently oriented planes, as if computing the 2D “shadows” of
the trajectories. In each shadow, an apparent crossing
between two projected curves is defined as their intersec-
tion. A crossing may also occur between two different time
instants of the same trajectory; these self-crossings are
treated identically (we verified that removing self-crossings
yields the same results). Note that crossings are not
instantaneous crossings between particles, but between
their history. The sign of each crossing (i.e., counting it
asþ1 or −1) is given by the right-hand rule (see Fig. 1): we
keep track of what trajectory is on top, and in what
direction particles moved when going across the vertex.
This orientation defines the handedness of the crossing [3].
The normalized crossings Kp for the pth projection are

defined as Kp ¼ M−1
p ΣMp

i¼1σi, where Mp is the total
(unsigned) apparent crossings in the pth projection, and
σi ¼ �1 is the sign of the ith crossing. Then, we define the
mean linking number of the N trajectories over the interval
ΔT as the mean of Kp over all P projections: K ¼
P−1ΣP

p¼1Kp.
Description of the data.—To study K and H we consider

direct numerical simulations (DNSs) and tracers from
particle tracking velocimetry (PTV) in laboratory experi-
ments (see [34] for more details). We use two sets of DNSs
[35,36] with resolutions of 2563, 5123, and 10243 points to
span different Reynolds numbers. The first consists of
DNSs of HITwith correlated random forcing to give a flow
with a tunable helicity [37] (we also consider a “HIT 2”
simulation with very short forcing correlation time).

Another set of DNSs uses TG forcing [38,39] which
mimics, in a periodic domain, multiple cells resembling
VK flows, each non–mirror symmetric and with non-null
helicity [with alternating signs between the cells, resulting
in null total helicity in a ð2πÞ3-periodic domain]. In each
simulation 106 tracers were evolved along with the fluid.
Experimental data on tracers trajectories obtained by PTV
originates from two experiments: a VK experiment in
Buenos Aires [40] generates a helical flow, and the
Lagrangian Exploration Module (LEM) in Lyon [41,42]
generates mirror-symmetric isotropic turbulence.
For each dataset, K was computed using sets of

trajectories that span a large-scale volume of the flow in
nonoverlapping time intervals ΔT ranging from a fraction
to several τL, with τL the Lagrangian correlation time
(estimated from the tracers velocity autocorrelation func-
tion, or from structure functions in the LEM [41,43]). We
consider subsets of N ¼ 250 particles in the DNSs and all
available particles in the experiments, with P ¼ 26 pro-
jections whose normal vectors are approximately uniformly
distributed over a unit sphere, and given by n̂p ¼ ðix̂þ
jŷ þ kẑÞ=ði2 þ j2 þ k2Þ1=2 with i; j; k ∈ f−1; 0; 1g. This
number of projections was empirically established as the
minimum required to consistently recover the linking
number of randomly oriented torus knots.
The relation between the linking number of trajectories

and helicity.—We analyze K as a function of the norma-
lized, dimensionless helicity H

H ¼ LU−2hHiΔT; ð1Þ

where h·iΔT indicates time averaging over ΔT, U ¼ ðhv2x þ
v2y þ v2ziÞ1=2 (with vi the components of the tracers’
velocity and h·i the average over ΔT and all trajectories)
is a measure of the tracers’ velocity over ΔT (to consider
possible effects of velocity variations over ΔT on the
helicity), and L ¼ uτL is a flow integral scale based on the
characteristic one-component rms value of the tracers’
velocity u estimated over a long time interval. These
choices allow for the estimation of all quantities solely
from Lagrangian measurements.
Figure 2 shows K as a function of H for DNSs of HIT

and for three datasets of the LEM experiment. Error bars
represent 95% confidence intervals (approximately twice
the standard deviation of K). K and H were computed for
ΔT ¼ τL. For the entire range of H explored, the data
display a linear dependence between the two quantities,
irrespective of Reynolds number and flow geometry.
Therefore, we propose that these two global, large-scale
quantities are related by

K ¼ αH; ð2Þ

where α is an unknown dimensionless constant. An
additive constant is not expected in this relation, as we

FIG. 1. Definition of apparent crossing. A pair of experimental
3D trajectories (a) are projected onto a 2D plane [bottom of (a),
and (b)]. Arrows and color gradients indicate time progression. A
crossing is an intersection between the projections and is given by
the particles’ history; it does not necessarily occur with the
particles being near at the same instant. The sign of each crossing
is defined by the right-hand rule [(b), bottom]: þ1 when an
anticlockwise rotation is needed to move from the tip of the arrow
on top to the tip of the arrow below, and −1 in the clockwise case.
Here, with two tracks projected in one plane, we see one negative
and two positive crossings.
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can assume that a mirror-symmetric flow will have
statistically as many þ1 crossings as −1 crossings (which
is consistent with the data). An error-weighted least-
squares fit using the HIT data yields αHIT ¼ 0.241�
0.006 (95% confidence level) independently of the
Reynolds number (provided a fully developed turbulent
state is reached). A dashed straight line with this slope is
shown in Fig. 2. We verified that a linear relation as in
Eq. (2) holds regardless of the particular choice of U and L
employed to normalize H in Eq. (1).
Before discussing the other datasets, note Eq. (2) is

robust: it holds for all datasets with small changes in α
within errors, and when the number of particles N, the time
span ΔT, or other parameters are changed, and also when
sufficiently large subregions of the flow are considered. To
understand how using a finite number of trajectories affects
the determination ofK and its error, different subsets of 250
particles were randomly chosen from the 106 trajectories
traced in each DNS. We see minor variations in the value of
K, as shown by the probability distribution function (PDF)
ofK for different subsets in a DNS (indicated by the arrow)
in Fig. 2(a). The PDF is compatible with a Gaussian
distribution and its dispersion is associated with the errors
in K when using a finite number of tracers. Note this PDF
does not correspond to local helicity fluctuations: it is a
measure of the uncertainty in the determination ofK. Using
N ¼ 250 is motivated by the number of trajectories that can

be simultaneously observed using PTV in experiments, of
the order of the several tens to a few hundreds. Indeed, such
value is enough to get a reasonable determination of K,
with smaller errors as N is increased. As ΔT decreases,
N ¼ 250 is still enough to determine K, although with
larger error bars. By varying ΔT, reasonable correlation
(with the same value of α) is obtained between K and H
when ΔT ≥ τL=5. For ΔT < τL=10 uncertainties in K
prevent distinction between chiral and nonchiral flows.
By increasing N to 1000, we verified that computing K
overΔT ¼ τL=10 allows for a distinction between different
flow chiralities, but to achieve a correlation between K and
H (consistent within uncertainties) it is still necessary to
use ΔT ≈ τL=5. This can be interpreted as a limit on how
short a history of the flow is needed to reconstruct its
topology. Furthermore, the condition ΔT ≥ τL=5 implies
that if K is used to estimate the helicity in a flow as a
function of time, ≈0.2τL is the maximum time cadence for
which KðtÞ [and thus HðtÞ] can be estimated. Finally,
increasing ΔT (for fixed N) results in a better agreement
between K=α and H. See [34] for more details on the
uncertainty in the determination ofK, and on the robustness
of the results on N, ΔT and on the memory of the
trajectories.
As previously mentioned, Fig. 2 also shows data from

tracers in LEM, an experiment that generates mirror-
symmetric (i.e., zero helicity) HIT. The turbulence gen-
eration mechanism is quite different from the DNSs, using
multiple impellers instead of random volumetric forcing.
Three experimental runs with different Reynolds numbers
(labeled LEM 2, LEM 4, and LEM 8) were analyzed. K
was estimated from the signed crossings over ΔT ¼ τL for
each run. The mean value of K for each one is shown in
Fig. 2; their values are KLEM 2 ¼ 0.018� 0.18, KLEM 4 ¼
0.040� 0.29, andKLEM 8 ¼ 0.025� 0.28 (95% confidence
intervals). Such large fluctuations arise from time fluctua-
tions in the flow, since the measurements were performed
in the central region of the setup (of dimensions much
larger than the Kolmogorov scale) where turbulence is
expected to be more isotropic but large-scale fluctuations
are likely to be strong as one impeller may temporarily
dominate over others. Nonetheless, the value of K is
compatible with zero, consistent with null mean helicity.
Helicity and the linking number of fluid trajectories in

swirling flows.—The relation given by Eq. (2) holds for
other turbulent flows besides HIT, and even locally in
space, provided the region is large compared to the
Kolmogorov scale, as H and H are global, averaged
quantities. We now consider the DNSs of TG turbulence
and the VK laboratory experiments. Because of symmetries
in the TG forcing [38,44] the flow in these DNSs can be
divided into eight cells each of volume ðπÞ3. The eight cells
are labeled as [Cx,Cy,Cz], where Ci ¼ 1 or 2, with 1
labeling the region from 0 to π in the ith direction, and 2 the
region between π and 2π (i.e., the cell labeled [1,2,1] refers

FIG. 2. Linking number of tracers trajectoriesK as a function of
normalized helicityH for DNSs of HIT and the LEM experiment.
Error bars correspond to 95% confidence intervals. A least-
squares linear fit taking into account the error bars is shown as a
reference. Inset (a) shows the PDF of K in semilogarithmic scale
for different subsets of tracers of the same DNS, indicated by the
arrow. A Gaussian distribution with the same mean and standard
deviation is shown for comparison. Inset (b) shows K as a
function of H for the VK experiment, and cells in TG simu-
lations; each of the cells corresponds to a VK-like swirling flow
with nonzero mean helicity. Aweighted least-squares linear fit for
all TG data is shown, and it is compared with the linear fit
obtained from HIT.
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to the subregion ½0; πÞ × ½π; 2πÞ × ½0; πÞ of the whole
computational domain). Each cell has a flow that in
many previous studies was shown to have Eulerian and
Lagrangian similarities with that observed in VK experi-
ments [39,40,45], despite differences in boundary condi-
tions and forcing mechanisms (volumetric forcing in the
former, and two counterrotating propellers in the latter):
two counterrotating vortices separated by a shear layer. The
VK flow has nonzero helicity, while given the TG sym-
metries, four of the DNS cells have mean helicity with a
preferential sign, and the other four cells have the oppo-
site sign.
Figure 2(b) shows K for the VK experiment (with H

estimated from DNSs and large-scale flow geometry), and
for each cell in the TG simulations, as a function of eachH
value, for two different Reynolds numbers in 5123 or 10243

TG DNSs. As before, in simulations N ¼ 250 and
ΔT ¼ τL. Fluctuations of K and H are larger than in
HIT as this flow can have wild variations of helicity with
time. However, a linear relation between both quantities is
again recovered. A weighted least-squares fit using both
resolutions yields αTG ¼ 0.23� 0.01 (95% confidence
interval). A straight line with this slope is indicated as a
reference in Fig. 2(b), as well as another with slope αHIT for
comparison; αHIT and αTG are compatible within error bars
(thus, in the following α ¼ αHIT). This also shows that the
linking number of fluid trajectories in subregions of the
flow (as the individual cells in the DNSs of TG) is
proportional to the local flow helicity. Figure 3(a) depicts
the value ofKðtÞ for each TG cell in simulations with 10243

grid points. For each cell, K was computed with ΔT ¼ τL
over ten random subsets of trajectories (each with 250
trajectories). The different points in each vertical stripe
correspond to K estimated for these ten subsets (in groups
of connected points for subsets in the same cells), at
different consecutive time intervals up to time 6τL. K
(and H) fluctuates strongly in time in each cell, but half the
cells preferentially have K > 0, and the other half K < 0.
Given a TG cell and a time interval ΔT, by averaging over
the ten subsets a mean value of K at said time interval is
computed, and a time series KðtÞ for each cell is thus
reconstructed. Figure 3(b) shows the resulting time series of
the linking number (or, except for the factor 1=α, the flow’s
normalized helicity) for the cells with negative helicity.
The mean value of K in the VK experiment at a similar

Reynolds number as the DNSs, obtained from PTV, is also
shown in Fig. 3(a) by the dashed line, with a shaded
horizontal stripe indicating 95% of the fluctuations.
Figure 3(c) shows the PDF of K in the VK experiment
for 500 measurements (the vertical axis is shared by both
panels), and a normal distribution with the same mean and
standard deviation. The value of K in the VK experiment
and the TG cells with positive helicity are compatible
within uncertainties, as expected from the similarities both
flows share in their large-scale geometry, and despite the

differences in boundary conditions and forcing mecha-
nisms. Thus, the flow helicity has an imprint in the number
of crossings of particles, and for very different turbulent
flows, with or without mean flows, and with different
boundaries.
We showed that fluid elements tell a story of the

topology of the underlying turbulent flow. It is known that
the irreversibility of turbulence has an effect on trajectories
[46]. Here, the flow topology affects particles by linking the
trajectories. In a mirror-symmetric flow, signed crossings
average to zero. In a chiral flow that is not the case: flows
with positive helicity result in a positive average of signed
trajectory crossings, while flows with negative helicity
result in negative signed crossings. Moreover, when prop-
erly normalized these two quantities are linearly related,
with a proportionality constant that appears independent of
the Reynolds number, the boundary conditions, and the
mechanism that generates the turbulence. The linking of the
particle paths involves macroscopic length scales and
timescales. This is a remarkable feature, as a particle might
go through flow regions in which strong fluctuations could
potentially erase the broken mirror symmetry of the flow,
especially in the TG flow. Statistical alignment between u
and ∇ × u, which may differ depending on flow helicity
and was reported to take place preferentially in regions of
low dissipation [47–51], can only partially explain these
observations. As the particles move following u, they may

FIG. 3. (a) Linking number K as a function of time in the eight
TG cells, and in the VK experiment. The different points
correspond to K estimated for ten subsets of 250 particles (in
groups of connected points), at different consecutive time
intervals ΔT ¼ τL up to time 6τL. Half the cells have K > 0
(with fluctuations in time), and the other half K < 0. The dashed
line is the mean value of K in the VK experiment, with the
colored band representing a 95% confidence interval considering
time fluctuations. (b) Time evolution of K for all the cells with
negative helicity, reconstructed by averaging the ten subsets from
the data in (a). (c) PDF of K fluctuations in the VK experiment,
with a normal distribution NðμVK; σVKÞ with the same mean μVK
and standard deviation σVK for comparison.
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also partially follow vorticity field lines in helical regions,
but this can only happen in such specific regions. The
relation between H and K for long times and large scales
thus indicates a stronger, and nontrivial, impact of flow
chirality in physical observables and in the memory of fluid
particles. The particle linking number thus defined con-
nects a global topological invariant of the flow with a
topological number of fluid trajectories. Moreover, the ratio
of proportionality α is the same for very different flows, and
in particular, for cases with helicity in the large-scale mean
flow (i.e., TG and VK flows) as for HIT without a mean
flow, both numerically and experimentally. This suggests
that α may characterize a universal property of turbulence.
Such connection has implications, e.g., for studies of
mixing. If a particle’s trajectories get more linked in a
helical flow, then helicity can have an effect in mixing,
something already noted in studies of helical flows in
biological systems [52,53]. Finally, the relation betweenH
and K provides a way to estimate helicity in laboratory
experiments, a quantity which so far has eluded detailed
laboratory characterization in turbulent flows. Indeed, one
motivation to use small sets of particles or short trajectories,
instead of the millions of long trajectories usually acces-
sible in DNSs, was to probe the robustness of the particle
linking number when used in conditions as those found in
the laboratory.
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