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Because of quantum noise fluctuations, the rate of error achievable in decision problems involving
several possible configurations of a scattering system is subject to a fundamental limit known as the
Helstrom bound. Here, we present a general framework to calculate and minimize this bound using
coherent probe fields with tailored spatial distributions. As an example, we experimentally study a target
located in between two disordered scattering media. We first show that the optimal field distribution can be
directly identified using a general approach based on scattering matrix measurements. We then demonstrate
that this optimal light field successfully probes the presence of the target with a number of photons that is
reduced by more than 2 orders of magnitude as compared to unoptimized fields.
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Many sensing applications rely on the detection of
targets embedded within disordered or engineered materi-
als. For instance, interferometric techniques are currently
being developed to detect the presence of single particles
within biological specimens based on coherent light scat-
tering [1,2]. Coherent beams are also used to detect the
presence of defects in nanofabricated samples such as
integrated circuits [3,4]. In such experiments, and more
generally for all decision problems involving several
possible configurations of a given scattering system, the
rate of error is fundamentally limited by quantum noise
fluctuations [5,6], which usually appear in measured data as
shot noise. This limit, which predicts high rates of error for
measurements performed in low-light conditions, repre-
sents a central obstacle for the development of nondestruc-
tive high-speed sensing techniques. Different strategies
have been devised to address this challenge, notably by
finding optimal and robust receivers for coherent states
[6-11] and by adopting quantum illumination schemes
[12—-14]; however, all these approaches are primarily
applied to scattering systems with simple permittivity
distributions.

When interacting with complex media such as disor-
dered media or engineered nanomaterials, light is usually
absorbed and scattered multiple times, resulting in the
formation of complex interference patterns. Despite this
difficulty, it has been shown that the propagation of light in
such media can be controlled by spatially modulating the
incident field using wavefront shaping protocols [15-17].
These methods have opened up the possibility to optimally
deposit and store energy in or behind scattering materials
[18-24]. Integrated in a framework based on estimation
theory, wavefront shaping also enables the generation of
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optimal fields that maximize the Fisher information
retrieved from complex scattering systems, thus allowing
one to precisely estimate small variations in the value of
continuous parameters [25,26]. The question then arises as
to how wavefront shaping can be used for target detection
and, more generally, for any decision problem in which a
number of hypotheses are formulated and an experiment
is conducted to decide on which hypothesis is true. This
question is especially important in the development of
optical microscopes optimized for (nonimaging) decision
tasks, as promoted by the advent of approaches based on
deep learning algorithms [27-31].

In this Letter, we identify and experimentally generate
coherent light fields that are optimally shaped for decision
problems involving two possible configurations of a com-
plex scattering system. To this end, we introduce the
discrimination operator, which allows one to directly
identify the spatial distribution of the field that minimizes
the rate of error due to quantum noise fluctuations. We first
show that this operator can be readily constructed from the
knowledge of the scattering matrices describing each
configuration of the system. We then illustrate this
approach experimentally by generating a light field that
is optimized to detect the presence of a target hidden in
between two disordered scattering media. This field is
shown to optimally interact with the target, despite its
complex environment. Finally, we demonstrate that this
optimal field successfully probes the presence of the hidden
target in low-light conditions, with a number of photons
that is reduced by more than 2 orders of magnitude as
compared to unoptimized fields. These results, which
connect quantum detection theory to wavefront shaping,
establish a new benchmark to assess and improve the
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FIG. 1. (a) Representation of the experiment, which consists in optically probing the presence of a target (3 xm in diameter) located
between two scattering media. The system is illuminated with an incident field that is spatially modulated using a digital micromirror
device (DMD). The field that comes out of the system is measured by a camera in N spatial modes using a homodyne scheme. (b) The
measured field spans a complex N-dimensional space. The expectation value of the field depends on the presence of the target, and its
variance is ultimately limited by quantum noise fluctuations. The incident field optimally probes the presence of the target when the
statistical distance d;, is maximized. (c),(d) Intensity distributions experimentally measured with the optimal incident field when the
hidden target is (c) absent and (d) present. Because of complex absorption and scattering processes involved within the system, these
distributions appear as speckle patterns. Despite this complexity, the optimal light field is strongly affected by the presence of the target,
which allows us to detect this target with a minimum rate of error.

performances of sensing and classification techniques
using structured illumination.

We consider an arbitrarily complex scattering system that
can take two distinct configurations with probabilities 7; and
7,. Detecting the presence of a target included within a given
scattering medium [Fig. 1(a)] constitutes a typical example of
such a situation: the target can either be absent (hypothesis
H,) or present (hypothesis H,). To decide on which
hypothesis is true, we apply a measurement to the scattering
system and we choose a hypothesis based on a decision
criterion, resulting in a probability of error P,. This
probability can be minimized by optimizing over both the
decision criterion and the positive operator-valued measure
(POVM) describing the measurement process. The minimum
probability of error Py, which is limited only by quantum
noise fluctuations, is calculated from the trace distance
between the two quantum states associated with each
hypothesis—a result known as the Helstrom bound [5,6].
This general formalism can be applied to the case of a probe
field in a coherent state described by the coefficients
{E™, ...,E%} in M spatial modes. After interacting with
the scattering system, such an incident state produces an
outgoing state that is similarly described by the coefficients
{EYY, ..., EY} in N spatial modes, where the subindex i
denotes the configuration of the scattering system interacting
with the field (if H, is true i = 1, and if H, is true i = 2).
Note that these coefficients, defined here as expectation
values (calculated over quantum noise fluctuations) of the
complex field operator, can equivalently be interpreted as
describing the complex classical field. The Helstrom bound
is then simply expressed by [5]

1
Pu=3 [1 - \/1 —4mzr2exp(—nd?z)}, (1)

where n is the number of incident photons and d;, is a
statistical distance expressed by

1 N
di, =—> B3 — EVYP. (2)
k=1

The distance d, quantifies the overlap between two different
outgoing states [Fig. 1(b)], as created by the interaction of a
single photon with each of the two possible configurations of
the scattering system. This distance consequently drives the
exponential decay of the probability of error that is achieved
when both the POVM and the decision criterion are opti-
mized. Indeed, in the asymptotic limit (n>> di3), the
Helstrom bound decays exponentially with n, with a decay
constant given by d?,. Equation (2) also explicitly shows that,
for a binary decision problem, the contribution of each
outgoing mode simply sums up to set the Helstrom bound.

Far-field wavefront shaping techniques enable us to
generate incident states with custom spatial distributions
[15]. Here, our goal is to identify the optimal field
distribution that minimizes the Helstrom bound for any
given number n of incident photons, which entails maxi-
mizing d3, over all possible incident states. For this
purpose, we introduce the scattering matrices S; and S,
[17], which connect incident to outgoing states under the
respective hypotheses (target being absent or present).
These scattering matrices are supposed to be known, either
by ab initio calculations or by prior measurements.
Conveniently writing Eq. (2) in bra-ket notation nd}, =
(ES™ — EQ™|ES" — ES'), and introducing the linear rela-
tion defining the S matrix |ES") = S;|E™), we obtain the
following quadratic form (see Supplemental Material [32],
Sec. S1.1):
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FIG. 2. (a) Eigenvalues A; of the discrimination operator, normalized by the average value A (the averaging is performed over all
possible incident states). Small eigenvalues (associated with measurement noise) are closely spaced and appear as a continuum due to
the finite thickness of the lines, while large eigenvalues (associated with eigenstates that significantly interact with the target) appear as
discrete lines. (b)—(e) Intensity distribution in the target plane measured for a few representative eigenstates—including (b) the first
eigenstate (i.e., the optimal state), (c) the second eigenstate, and (d) the eighth eigenstate—as well as for (e) the average state (defined as
an equally weighted linear superposition of all eigenstates). These distributions were measured in the absence of the target, and without
the scattering medium located between the target and the camera. (f) Image of the target (a single bead) measured under spatially
incoherent illumination. (g)—(1) Analogous to (a)—(f) for a target composed of six beads.

d%z = <5m\D12|5m>a (3)

where |€") = n~!/2|[E™) is the normalized incident state
and where D, = (S, — S;)7(S, — S;) is a Hermitian oper-
ator that we refer to as the discrimination operator. Among
the M eigenvalues of D ,, which all lie in the interval [0;4],
the largest one is of specific interest as it gives the
maximum achievable value of d3,, which is reached by
illuminating the scattering system with the corresponding
eigenstate. This general approach thus allows one to
minimize the Helstrom bound from the knowledge of
the scattering matrices S; and S,, regardless of the com-
plexity of absorption and scattering processes that are
involved within the system [Figs. 1(c) and 1(d)].

In order to investigate the properties of the discrimina-
tion operator experimentally, we study a target (a polysty-
rene bead with a diameter of 3 ym) located on a glass
coverslip, that we place in between ground glass diffusers
[Fig. 1(a), see also Supplemental Material [32], Secs. S3
and S4]. This scattering system is illuminated using
coherent light at a wavelength 4 = 532 nm. To characterize
the system through transmission matrix measurements [37],
we modulate the amplitude and the phase of the incident
field with a digital micromirror device (DMD) using Lee
holography [38], and we measure both quadratures of the
outgoing field with a camera using off-axis holography
[39]. In this way, we control M = 1735 incident modes and
N = 2617 outgoing modes, allowing us to acquire two
(subunitary) transmission matrices S; and S, measured
with the target present and absent from the field of view,
respectively.

The knowledge of these matrices allows us to construct
the discrimination operator D;,, and thus to identify the
optimal incident state via an eigenvalue decomposition of
D1,. To quantitatively assess the benefits of operating with
the optimal state instead of unoptimized ones, we can study
the M eigenvalues of D;,, which we sort in descending
order [Fig. 2(a)]. Using this convention, the maximal value
of d2, is given by the first eigenvalue A;, which we
compare to the value of d3, averaged over all possible
incident states. This average value A = Tr(Dy,)/M is
exactly reached for an equally weighted linear super-
position of all eigenstates, that we refer to as the average
state. In our experiment, using the optimal state instead of
the average one is shown to drastically enhance d3,, with a
ratio A, /A of the order of 400. This implies that the number
of incident photons needed to reach a given probability of
error is smaller by more than 2 orders of magnitude with the
optimal state.

In order to acquire a better understanding of the field
distribution within the system, we kept the first diffuser
(located between the DMD and the target) but temporarily
removed the second diffuser (located between the target
and the camera). In this configuration, the camera directly
images the plane of the target, thereby allowing us to
visualize how the different eigenstates interact with the
target [Figs. 2(b)-2(f)]. We can see that the first eigenstate
optimally interacts with the target by generating a strong
focus at its position. Remarkably, the intensity distribution
of all eigenstates that strongly interact with the target (those
associated with the largest eigenvalues) have a structured
aspect that resemble those of Laguerre-Gaussian modes
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[Figs. 2(b)-2(d), see also Supplemental Material [32],
Sec. S5.1), as opposed to the specklelike distribution
generated by the average state [Fig. 2(e)]. We specifically
observe that the 12 largest eigenvalues are significantly
above the noise floor, a number that matches the number of
existing optical modes in the area covered by the target.
Several of these eigenvalues are close to be degenerate, as
explained by symmetries in the intensity distributions
generated by the eigenstates.

The generality of our formalism allows us to identify
optimal states not only in the case of a single bead but also
for more complicated targets. As an example, we study
the case of a target composed of a cluster of six beads
[Figs. 2(g)-2(1)]. In this case, the eigenstates that signifi-
cantly interact with the target [Figs. 2(h)-2(j), see also
Supplemental Material [32], Sec. S5.2] are all characterized
by complicated intensity distributions that cannot be easily
predicted without the knowledge of the discrimination
operator. These results illustrate the fact that optimal states
do not necessarily focus light everywhere onto extended
targets, but instead provide one with the unique optimal
solutions that generally minimize the Helstrom bound,
taking into account absorption as well as all single and
multiple scattering effects (including, e.g., strong coupling
effects occurring between a light field and the dipoles
induced within a strongly scattering target). However, for
such an extended target, the eigenvalue distribution appears
as a continuum [Fig. 2(g)], which prevents us from easily
relating the number of large eigenvalues to the spatial
extent of the target.

While we introduced the discrimination operator to
minimize the Helstrom bound, which can be reached only
with an optimal detection scheme, it is also the relevant
operator to find optimal incident fields in the case of
Gaussian receivers, which are sub-optimal but widely used
due to their simplicity [6]. Indeed, a simple homodyne
scheme is optimal among all available Gaussian receivers
[40], whereas implementing an optimal detection scheme—
such as a Dolinar receiver [7]—typically requires low-noise
time-resolved photon detection along with an excellent
interferometric stability. With the homodyne detection
scheme implemented in our experiment (which is shot-noise
limited), measured field quadratures follow a Gaussian
distribution of variance o> = 1/2 (see Supplemental
Material [32], Sec. S2.1). For two hypotheses with equal
a priori probabilities (z; = 7z, = 0.5), the theoretical prob-
ability of error associated with this Gaussian receiver is then
expressed by (see Supplemental Material [32], Sec. S2.2),

nd%2
—862). )

1
P; = —erfc
¢ = yerte(
This expression shows that accessing the discrimination
operator allows one to minimize not only the Helstrom bound
but also the probability of error associated with homodyne
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FIG. 3. Rate of error as a function of the number of incident

photons for the average state (blue) and the optimal state (red). In
both cases, the experimentally observed error rates (data points)
are compared to the theoretical values associated with our
homodyne setup (solid lines) and to the Helstrom bound (dashed
lines). Shaded areas represent 95.4% confidence intervals, taking
into account only the statistical error caused by the finite number
of measurements (N, = 4000). Note that, while we illuminate
the system with up to 7.4 x 10° photons, many photons are
scattered out of the field of view by the diffusers. As a
consequence, we only detect up to 140 photons over the area
covered by the camera sensor.

detection schemes, as they are both governed by the
statistical distance d;,. This is experimentally demonstrated
by performing measurements in low-light conditions, using a
variable attenuator to gradually change the number of
incident photons. The presence of the bead located in
between diffusers is tested by illuminating the system with
either the optimal incident state (d3, = A;) or with the
average state (d?, = A). Measured data are then processed
using the likelihood-ratio test (see Supplemental Material
[32], Sec. S2.3), which is theoretically optimal [41]. The
resulting rate of error observed over N, = 4000 measure-
ments is shown in Fig. 3 as a function of the number n of
incident photons. The measured rate of error, which expo-
nentially decreases with n, is characterized by a decay
constant that is larger by more than 2 orders of magnitude
for the optimal state (red points) as compared to the average
one (blue points). Consequently, with the optimal state, far
fewer photons are needed to accurately detect the presence of
the target. Measured rates of error are only slightly higher
than theoretical values predicted by Eq. (4) (solid lines), a
difference that is due to a slightly sub-optimal decision
criterion—the likelihood-ratio test requires unbiased esti-
mates of the field expectation values that are difficult to
obtain in low-light conditions. Finally, the Helstrom bound
calculated using Eq. (1) is similarly reduced when the
optimal state is used instead of the average one (dashed
lines), although with a lower overall error rate.

Whereas we measured only subparts of the full S matrix
in our experiments, as usually done in optics [37,42]—it is
also instructive to discuss the ideal case of unitary
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scattering matrices (S;!' = S7). This is achieved for systems
without gain or loss (e.g., multimode fibers [43,44]), if one
has access to all existing incident and outgoing optical
modes. The eigenstates of D;, are then solutions of a
generalized linear eigenvalue problem, in the same way as
scattering invariant modes [45]. In this unitary limit, the
optimal state along with all other eigenstates of Dy, thus
share a remarkable property: they all produce outgoing
fields that are independent of which of the two scattering
systems they interact with, except for a global phase factor
which affects all outgoing modes and which contains all
available information (see Supplemental Material [32],
Sec. S1.2). Nevertheless, as could be expected from the
subunitarity of the measured transmission matrices, this
property is not observed in our experiment [see Figs. 1(c)
and 1(d)].

To summarize, we demonstrated how to spatially modu-
late light fields in order to optimally discriminate between
different configurations of a complex scattering system. To
this end, we introduced the discrimination operator D5,
which quantifies the amount of information produced by
any perturbation of a discrete observable. We experimen-
tally showed how to use this operator for generating light
states that are optimally tailored to detect a target located
inside a disordered medium even in low-light conditions.
These results open up new perspectives to improve the
performances of nanophotonic sensing devices based, e.g.,
on photonic crystal waveguides [46], metasurfaces [47,48],
or cavities [49]. The orthonormal basis formed by the
eigenstates of D, is also well suited to analyze experiments
based on time-reversed adapted perturbation [50-53],
which in turn suggests interesting experimental approaches
to generate optimal states. Moreover, by associating scat-
tering matrix measurements with advanced optimization
procedures [54], optimal states could potentially be iden-
tified for decision problems involving more than two
configurations as well as to composite hypotheses prob-
lems [5,41]. Interestingly, our results might also find
applications in cryptography, notably to identify physical
unclonable keys that are the most difficult to reproduce
[55,56]. Finally, the formalism developed in our work
suggests a new path to study complex scattering systems
using quantum illumination [13]. In this perspective, the
use of squeezed states of light emerges as a promising
approach [57,58].
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