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A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field
in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical
phase, in which the atoms periodically localize between the antinodes of the pump lattice, associated with
an oscillating net momentum along the pump axis. We observe this dynamical phase through the periodic
switching of the relative phase between the pump and cavity fields at a small fraction of the driving
frequency, suggesting that it exhibits a time crystalline character.
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Rapid technological advances have elevated cold-atom
systems to preeminent platforms for realizing model
systems of quantum–many body dynamics [1–6]. An
intriguing subclass is hybrid light-matter systems, which
are composed of cold atoms coupled to an optical cavity,
and display a strongly enhanced light-matter interaction,
giving access to the physics of strong light-matter coupling
and long-range correlations [7,8]. A specific feature of
these platforms is the well controlled dissipation, which
allows for fast nondestructive in situ monitoring of the
system dynamics [8–15]. One of the fundamental models
for light-matter interaction is the Dicke model [16,17].
It describes a collection of N two-level systems coupled to a
single light mode and displays a phase transition between a
normal and a superradiant phase [16]. An open version of
the Dicke model with a weak dissipation channel is
approximately realized by a Bose-Einstein condensate
(BEC) placed in a linear standing wave optical cavity and
pumped by an optical standing wave oriented perpendicu-
larly with respect to the cavity axis [10,11,15,18–26]. The
normal phase is characterized by a BEC, light shifted by the
pump potential, with a homogeneous density distribution
along the cavity axis and a small number of photons in the
cavity that do not display coherence. The superradiant phase
shows a density grating enabling pronounced scattering of
photons from the pump into the cavity and vice versa.
Various extensions of the standard two-level Dicke model
have been proposed and realized using atom-cavity systems,
such as the spin-1 Dicke model [27,28] and the two-
component Dicke model [29–31], all sharing the coupling
of two-level systems to the same monochromatic light mode.
The extension of the Dicke model to the case of three-

level systems has been theoretically considered in
Refs. [32–34]. A specific example in a ring cavity has
been used to experimentally demonstrate subradiance [35].

In the present work, we experimentally realize the peri-
odically driven open three-level Dicke model by shaking
the standing wave pump potential in an atom-cavity system
as depicted in Fig. 1(a). It has been predicted in Ref. [36]
that this enables a dynamical phase, characterized by atoms
periodically localizing between the antinodes of the pump
lattice, i.e., on the intersite bonds, which has been called
dynamical bond density wave (DBDW) phase. This
DBDW phase exhibits time crystalline character and is a
characteristic signature of the periodically driven open
three-level Dicke model. Its experimental observation is
the central topic of this work.
We define the three-level Dicke model to describe the

interaction between a single quantized light mode and N
three-level atoms comprising energy eigenstates j1i, j2i,
and j3i in a V configuration. Its Hamiltonian is

H=ℏ ¼ ωâ†âþ ω12Ĵ
12
z þ ω13Ĵ

13
z

þ 2
ffiffiffiffi
N

p ðâ† þ âÞðλ12Ĵ12x þ λ13Ĵ
13
x Þ: ð1Þ

The bosonic operator â (â†) annihilates (creates) a photon
with frequency ω. The frequency detuning between the
lowest energy state j1i and the other two states j2i and j3i
are ω12 and ω13, respectively. For small detuning ω23

between the states j2i and j3i, i.e., when ω23 ≪ ω12;ω13,
the only relevant light-matter interactions are those that
couple state j1i with states j2i and j3i, the strengths of
which are given by λ12 and λ13, respectively. We introduce
the pseudospin operators Ĵlμ with l ∈ f12; 13; 23g, which
are related to the eight generators of the SU(3) group [37].
Note that the Gell-Mann matrices, the standard represen-
tation of the SU(3) group, can be obtained by an appro-
priate superposition of Ĵlμ [37]. Equation (1) is an extended
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form of the two-component Dicke model [29–31]. However,
the latter obeys the SU(2) algebra, while the pseudospin
operators in Eq. (1) fulfill the SU(3) algebra, instead.
To implement the three-level Dicke model, we consider

atoms in their electronic ground state occupying the
following three momentum states forming a V-shaped
level structure (see Fig. 1 in Supplemental Material
[38]). The ground state is the so called BEC state jBECi
given by the zero momentum state j0; 0i with respect to the
yz plane, light shifted by the pump field by an amount
−ϵ=2, where ϵ denotes the potential depth of the pump
wave [37]. The first excited state is the superpositionP

ν;μ∈f−1;1g jνℏk; μℏki of the four momentum modes
j� ℏk;�ℏki associated with the yz plane, light shifted
by the pump field by an amount −3ϵ=4 (here, k denotes the
wave number of the pump field) [37]. In view of its
spatially varying density ∝ j cosðkyÞ cosðkzÞj2, it is denoted
as the density wave state jDWi. The light shift for jDWi is
larger compared to that of jBECi, since the density
distribution of jDWi is localized in the antinodes of the

pump field [37]. The two states jBECi and jDWi span the
matter sector of the regular two-level Dicke model. If ϵ
exceeds a critical value ϵcrt, jBECi acquires an admixture of
jDWi. A Bragg grating is thus imprinted upon the density
of the jBECi state, which via efficient scattering of pump
light builds up a coherent intracavity light field. The jBECi
state, thus dressed by the cavity field, is denoted super-
radiant phase. In this work, we operate either with ϵ < ϵcrt
or with ϵ only very slightly above ϵcrt, such that the
additional dressing by the cavity field is zero or negligibly
small. The second excited state is associated with the
momentum state superposition

P
ν;μ∈f−1;1g νjνℏk; μℏki.

This state exhibits the smallest light shift −ϵ=4, because
its density distribution ∝ j sinðkyÞ cosðkzÞj2 matches with
the nodes of the pump wave [37]. This state is called bond
density wave (abbreviated jBDWi) as its density maxima
coincide with the bonds between two potential minima of
the pump wave. We denote the energy separation between
jDWi and jBECi as ℏωD, and that between jBDWi and
jBECi as ℏωB, respectively. See Supplemental Material for
a more detailed description [38].
In the atom-cavity implementation of the standard Dicke

model, jBDWi is not coupled to jBECi and hence can be
dropped. To implement a coupling between jBDWi and
jBECi, the transverse pump lattice is periodically shaken in
space [36]. In Ref. [37], we show that the Hamiltonian for
the shaken atom-cavity system can be mapped onto a
parametrically driven version of the three-level Dicke
model.

H=ℏ ¼ ωâ†âþ ĴDz ωD þ ĴBzωB þ 2ϕðtÞðωB − ωDÞĴDB
x

þ 2λ
ffiffiffiffi
N

p ðâ† þ âÞ½ĴDx − ϕðtÞĴBx �; ð2Þ

where ϕðtÞ ¼ f0 sinðωdrtÞ is the time-dependent spatial
phase of the pump lattice introduced by the shaking
protocol, and λ is the overall coupling strength parameter.
The pseudospin operators ĴDμ and ĴBμ with μ ∈ fx; y; zg
are directly associated with the jDWi and the jBDWi
states via the relations to their order parameters ΘDW≡
hcosðkyÞcosðkzÞi¼hĴDx i and ΘBDW ≡ hsinðkyÞ cosðkzÞi ¼
hĴBx i, respectively. Comparing Eqs. (1) and (2), we identify
Ĵ12μ ¼ ĴDμ , Ĵ13μ ¼ ĴBμ , Ĵ23μ ¼ ĴDB

μ , ω12 ¼ ωD, ω13 ¼ ωB,
λ12 ¼ λ, and a time-dependent light-matter coupling
λ13 ¼ −ϕðtÞλ. Moreover, in Eq. (2), the standing wave
potential of the pump introduces an additional albeit
negligible term proportional to ĴDB

x , which couples
jDWi and jBDWi [37].
For driving frequencies ωdr slightly above ωB, the DBDW

phase shows periodic oscillations of ΘBDW and ΘDW around
zero with frequencies ωBDW and ωDW, respectively. Theory
predicts the relation ωDW ¼ ωdr − ωBDW such that ωDW
is not an integer fraction of the driving frequency ωdr [36].
This is a hallmark of an incommensurate time crystal [36].

(a)

(c)

(b)

FIG. 1. (a) Schematic of the transversely pumped and shaken
atom-cavity system. A sample of cold atoms is placed in a cavity
oriented along the z axis. A standing wave potential is periodi-
cally shifted along the y axis using phase modulation techniques.
(b) Dynamical phase diagram with two distinct regions: In the red
area, the dynamics of the system is captured by a two-level Dicke
model. In the blue area, a three-level Dicke model is required.
(c) Dynamics of the product of the relevant order parameters for
strong driving in the three-level Dicke regime (blue) and for weak
driving in the two-level Dicke regime (red). The modulation
frequency is ωdr=2π ¼ 9.4 kHz and ωB=2π ¼ 8 kHz.
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Thus, the long-time average ofΘDW is zero in the three-level
Dicke region of the dynamical phase diagram, while it is
nonzero in the two-level Dicke region for an initial super-
radiant phase. This behavior is captured in Fig. 1(b), which
shows the time-averaged value of hĴDx i=N ≡ jDx obtained by
solving the equations of motion corresponding to Eq. (2) in
the semiclassical limit of a large atom number [37].
The DBDW dynamics may be experimentally studied

via the product of the order parameters ΘDW × ΘBDW,
which can be approximately measured by the normalized
occupation imbalance ΔF̃≡ ðFþ1;�1 − F−1;�1Þ=ðFþ1;�1−
F−1;�1Þmax, where F�1;�1 denotes the population of the
momentum state j � ℏk;�ℏki (see Supplemental Material
for details [38]). In the standard Dicke model realized for
off-resonant driving, ΘBDW ≈ 0 and ΔF̃ is negligible.
On the other hand, for driving frequencies ωdr slightly
above ωB, a beating signal is expected inΘDW × ΘBDW [see
Fig. 1(c)], which can be observed via ΔF̃. Furthermore,
the periodic switching of ΘDW in the three-level model
amounts to a periodic switching of the experimentally
observable relative phase of the pump and the cavity fields
φ≡ argðhâiÞ between 0 and π.
In our experiment, a BEC of 87Rb atoms is superimposed

with the fundamental mode of a high-finesse optical cavity
pumped by a retroreflected laser beam at wavelength
λP ¼ 803 nm. The resulting optical pump lattice has a
depth ϵ and is aligned perpendicular to the cavity axis,
as depicted in Fig. 1(a). The cavity has a field decay rate
κ ¼ 2π × 3.6 kHz comparable to the recoil frequency
ωrec ≡ ℏk2=2m (m ¼ atomic mass), such that the cavity
field and the atomic density distribution evolve on similar
timescales. This leads to a retarded infinite-range cavity-
mediated interaction between the atoms [13]. The system
realizes the Dicke phase transition from a homogeneous
BEC to a superradiant phase if ϵ exceeds a critical strength.
TheZ2 symmetry is spontaneously broken, when the atoms
localize at either the even or odd sites of a two dimensional
checkerboard optical lattice formed by the interference
between the pump and intracavity fields. The two sym-
metry broken states can be distinguished by the relative
phase difference φ between the pump and intracavity light
fields using a balanced heterodyne detection of the cavity
field. The appearance of the superradiant phase can be
detected in situ by the observation of a nonzero cavity mode
occupation NP [see red line in Fig. 2(b)], the locking of the
relative φ to zero or π [see green line Fig. 2(b)], or in a
destructive way through a nonzero occupation of the
fpy; pzg ¼ f�ℏk;�ℏkg modes in a momentum spectrum
[see Fig. 2(g)].
The experimental sequence proceeds as follows. We

prepare the system in the BEC phase or in the superradiant
phase close to the phase boundary towards the BEC phase,
followed by a 500 μs long waiting period to let the system
reach its steady state. Then, we shake the pump potential
by modulating the phase of the pump field using an

electro-optical modulator. The modulation strength f0 is
linearly increased to its desired value within 500 μs and
kept constant for 6.5 ms. A typical sequence of the pump
protocol is presented in Fig. 2(a). Resonant driving induces
a switching of the system between the two possible
sublattices of the superradiant phase at a frequency ωDW
and the intracavity photon number pulsates at a rate of
2ωDW. This behavior is exemplified in the green and red
curves in Fig. 2(b).
In Fig. 3(a), we plot ωDW as a function of ωdr and

average each data point over 100 experimental runs
including different modulation strength f0. The solid gray
trace shows a linear fit. We find good agreement with the
theoretical prediction ωDW ¼ ωdr − ωBDW of Ref. [36].
In Supplemental Material, we present a similar plot for
fixed ωdr and varying f0 to show that the dependence
of ωDW on f0 is very weak and negligible within the
experimental precision [38]. From the linear fit in Fig. 3(a),

N
N

F
FIG. 2. Single-shot realization of DBDW order. (a) Time
sequence for the pump lattice depth (blue) and the phase ϕ of
the pump field (red) with modulation strength f0 ¼ 0.1π and a
modulation frequency ωdr ¼ 11.5 kHz. (b) Phase difference φ
between the pump and intracavity field (green trace) and photon
number NP in the cavity (red trace). The dashed vertical lines
mark the time interval during which the modulation strength is
increased. The gray shaded area shows the time window for the
close-up presented in (c). (c) The red trace repeats the intracavity
photon numberNP from (b). The blue data points plot the product
ΘDW × ΘBDW, approximately given by ΔF̃ [see also Fig. 1(c)].
Each data point is averaged over five realizations. The solid line
shows a fit with a product of two harmonic oscillations. (d)–(h)
Single-shot momentum distributions recorded at the times
marked in (c).
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we extract the value of the parametric resonance as
ωBDW ¼ 9.93� 0.30 kHz. In Supplemental Material, we
also present an alternative protocol for measuring ωBDW
from the depletion of the cavity field for resonant modu-
lation [38]. In Fig. 3(b), we present the dynamical phase
diagram, highlighting the DBDW order obtained from
measuring the relative crystalline fraction Ξ quantified
by the color scale. The relative crystalline fraction is a
quantity commonly used in studies of time crystals. Here,
we define it as the amplitude of the Fourier spectrum,
calculated from the relative phase φ, at the expected DW
frequency ωDW, rescaled by its maximum value across
the parameter space spanned in the phase diagram [15].

The observed DW frequency follows the linear equation
ωDW ¼ ξ × ωdr − ωBDW with ξ determined according to the
linear fit in Fig. 3(a) as 0.98, i.e., very close to the expected
value of unity. This incommensurate subharmonic response
of the system with respect to the modulation frequency ωdr
is observed within a broad area of the dynamical phase
diagram in Fig. 3(b). In Supplemental Material, we present
the robustness of the subharmonic response against tem-
poral noise, which corroborates the classification of this
dynamical phase as an incommensurate time crystal.
Finally, we discuss the observed dynamics of the

momentum imbalance parameter ΔF̃ related to the calcu-
lations in Fig. 1(c). The oscillation frequencies ωDW and
ωBDW are extracted from the data in Fig. 2(c) using fðtÞ ¼
expð−τtÞA sinðωBDWtþ αÞ sinðωDWtÞ as a fit function.
Here, τ is the decay rate of NP and A is an overall amplitude
parameter. This measurement demonstrates a third option for
measuring ωBDW. However, since recording the momentum
spectra is a destructive measurement, this method is
much more time consuming than simply detecting the light
leaking out of the cavity, which makes it extremely difficult
to explore large areas in the parameter space. Nevertheless,
we repeated this measurement for a second set of modulation
parameters shown in Supplemental Material [38]. The
frequency ωBDW is independent of ωdr and we measure
ωBDW ¼ 2π × 9.8� 0.1 kHz. For a driving frequency of
ωdr ¼ 11.5 kHz, we measure a slow oscillation frequency
of ωDW ¼ 2π × 1.8� 0.1 kHz [see Fig. 2(c)], which
agrees well with the theoretical prediction of ωDW ¼
ωdr − ωBDW ¼ 2π × ð11.5 − 9.8Þ kHz ¼ 2π × 1.7 kHz.
While we have mostly focused on the case when initially

the superradiant state is prepared, we have also confirmed
that it is possible to enter the three-level regime heralded
by the emergence of the DBDW phase by initializing with
the homogeneous BEC or normal phase as exemplified
in Fig. 4.

(a)

(b)

dr

dr

D
W

DW = 0.98  x  dr - 9.93

FIG. 3. (a) ωDW is plotted against ωdr. ωDW is extracted by the
position of a Gaussian fit of the amplitude spectrum calculated
from the measured time evolution of the phase difference between
the pump and cavity fields φ. Each data point is averaged over
hundreds of realizations with different modulation strength f0
and fixed ωdr. The gray line is a linear fit yielding the result
shown in the plot legend. (b) The relative crystalline fraction Ξ is
plotted as a function of the modulation frequency ωdr and
strength f0. The diagram is constructed by dividing the parameter
space into 20 × 16 plaquettes and averaging over multiple
experimental runs within each.

dr

(a)

(b)

FIG. 4. Dynamics in the three-level Dicke regime using an
initial homogeneous BEC state. (a) Time sequence for the pump
lattice depth (blue) and the phase ϕ of the pump field (red) with
modulation strength f0 ¼ 0.1π and a modulation frequency
ωdr ¼ 11.5 kHz. (b) The phase difference φ between the pump
and intracavity field is plotted in green and the photon numberNP
in the cavity in red.
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The finite lifetime of the emergent DBDW phase in our
experiment can be mainly attributed to atom losses.
Furthermore, we note that our numerical simulations
indicate that contact interactions [36] and larger detunings
ωdr − ωB [38] decrease the lifetime of the time crystalline
response. In the experiment, however, it is difficult to
quantitatively separate the effects of atom losses, contact
interaction, and detuning from the resonance.
In conclusion, we have realized a periodically driven

open three-level Dicke model using a resonantly shaken
atom-cavity system. As the main signature of the three-
level Dicke model, we have demonstrated the emergence of
a dynamical bond density wave phase. When prepared
in the three-level Dicke regime, our system realizes an
incommensurate time crystal, whereby the atoms periodi-
cally self-organize along the bonds of the pump lattice. This
advances the understanding of cavity-BEC systems beyond
the standard two-level Dicke model, and broadens the
scope of dynamically induced many-body states in this and
related hybrid light-matter systems.
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