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Determination of nuclear moments for many nuclei relies on the computation of hyperfine constants,
with theoretical uncertainties directly affecting the resulting uncertainties of the nuclear moments. In this
work, we improve the precision of such a method by including for the first time an iterative solution of
equations for the core triple cluster amplitudes into the relativistic coupled-cluster method, with large-scale
complete basis sets. We carried out calculations of the energies and magnetic dipole and electric quadrupole
hyperfine structure constants for the low-lying states of 229Th3þ in the framework of such a relativistic
coupled-cluster single double triple method. We present a detailed study of various corrections to all
calculated properties. Using the theory results and experimental data, we found the nuclear magnetic dipole
and electric quadrupole moments to be μ ¼ 0.366ð6ÞμN and Q ¼ 3.11ð2Þ eb, respectively, and reduce the
uncertainty of the quadrupole moment by a factor of 3. The Bohr-Weisskopf effect of the finite nuclear
magnetization is investigated, with bounds placed on the deviation of the magnetization distribution from
the uniform one.

DOI: 10.1103/PhysRevLett.127.253001

Laser spectroscopy in combination with atomic structure
calculations can be used to directly determine nuclear
moments in a nuclear-theory-independent way. Such an
approach is limited by the ability to calculate hyperfine
structure (HFS) constants A and B from first principles to
high precision. This problem is exacerbated in heavy
atoms, where electronic correlation corrections increase.
A separate problem is a determination of the accuracy of
the theoretical computations, as the theory uncertainty
directly contributes to the uncertainty of the extracted
nuclear magnetic-dipole and electric-quadrupole moments.
While numerical uncertainties can be generally determined,
estimating other uncertainties is difficult, because it
requires a good understanding of the relative importance
of various contributions and method accuracy. In addition,
theoretical computations require modeling of magnetiza-
tion distribution, which is generally not known.
In this work, we consider a solution to these problems

for the 229Th nucleus, motivated by its unique features
described below. The development of precision methods for
extracting nuclear moments from laser spectroscopy mea-
surements becomes of particular importance now, as more
rare isotopes will become available with high yield at the

Facility for Rare Isotope Beams [1] for exploring nuclear
physics properties, especially of actinides.
As was established more than 40 years ago, the nuclear

transition frequency between the ground and first excited
states of 229Th is unusually small and amounts to only several
eV [2]. Subsequent measurements of this quantity con-
firmed it; the current most precise value of 8.19(12) eV [3] is
an average of two recent measurements [4,5]. Such a unique
feature of this isotope opens up a number of theoretical and
experimental research opportunities. Special interest in this
nuclear transition is motivated by a possibility to build a
superprecise nuclear clock [6] and very high sensitivity to
the effects of possible temporal variation of the fundamental
constants, including the fine structure constant α, strong
interaction, and quark mass [7,8].
The present uncertainty in the nuclear transition fre-

quency 0.12 eV, corresponding to ∼30 THz, is many orders
of magnitude greater than the natural linewidth, expected to
be in themillihertz range. Todetermine the nuclear transition
frequency with laser spectroscopic precision, as well as
other properties of the ground and isomeric nuclear states,
further experimental and theoretical investigations are
required [3]. Using the experimentally measured and theo-
retically calculated HFS constants A and B, the nuclear
magnetic dipole and electric quadrupole moments were
determined in Ref. [9] to be μ ¼ 0.360ð7ÞμN and Q ¼
3.11ð6Þ eb (where μN is the nuclear magneton and e is the
elementary charge). This value of the magnetic moment
contradicts the result μ ¼ 0.46ð4ÞμN found in Ref. [10] and
the recent nuclear calculationvalue 0.43–0.48μN obtained in
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Ref. [11]. Motivated by a necessity to confirm the results of
Ref. [9] and by a need to better understand the Th3þ
properties for the development of the nuclear clock [3],
we further developed the coupled-cluster single double
triple (CCSDT) method, fully including into consideration
both valence and core triple excitations, and applied it for the
high-accuracy calculation of the 229Th3þ properties. To the
best of our knowledge, due to the exceptional complexity of
the problem and very high computational demands, the core
triples were never included in the computation of the
properties of complicated atomic systems prior to this work.
The simplest version of this approach, the linearized

coupled-cluster single double (LCCSD) method, was
developed in Ref. [12]. In this version, only the linear
terms involving the single (S) and double (D) excitations of
the valence and core electrons were considered. A wide
range of properties of univalent systems can be calculated
with a very good accuracy using the LCCSD method (see,
e.g., [13]). But the systematic prediction of the properties of
transition matrix elements and HFS constants with an
accuracy below 1% requires the inclusion of the terms
beyond LCCSD, i.e., the nonlinear (NL) terms and the
triple excitations. For instance, the LCCSD values of the
HFS constants of the 6s and 6p1=2 states for 133Cs differ
from the experimental results by 6% [13].
Schematically single, double, and triple excitations are

presented in Fig. 1. Triple core-valence [or just “valence”
(vT)] terms and core terms involve excitations of two
core electrons and a valence electron and three core
electrons, respectively. The quadratic NL single and double
terms are combinations of the single and double excitations
of the electrons that take the form of S2, SD, and D2

combinations.
The NL and/or vT terms (in the leading order) were taken

into account in a number of works [9,14–20]. A more
sophisticated approach, where the equations for the valence
triples were solved iteratively, was developed and applied
in Refs. [21–23]. A detailed study of contributions of the

NL and vT terms in calculating the energies, magnetic
dipole HFS constants, and E1 transition amplitudes in Baþ
was presented in the recent work [24], which stressed the
need for inclusion of the core triple terms.
Aiming to improve the calculation accuracy of the HFS

constants and, respectively, to reduce the uncertainty of μ
andQ, we made the next step in developing the method and
included the core triple excitations. The equations for the
core triples were solved iteratively, using similar formalism
as developed for valence triples in Ref. [21].
Method of calculation.—We evaluated the energies and

HFS constants A and B of the lowest-lying states using a
version of the high-precision relativistic coupled-cluster
method developed in Ref. [21] and augmented by the
inclusion of the core triple excitations. The quadratic NL
terms were also included in the equations for singles and
doubles but omitted in the equations for triples. The cubic
and higher-order terms were also omitted as these are
expected to be small.
We consider Th3þ as a univalent ion with the ground

state configuration ½Ra�5f5=2. The initial Dirac-Hartree-
Fock (DHF) self-consistency procedure included the Breit
interaction and was done for the core ½1s2;…; 6p6� elec-
trons; the 5f and 6d orbitals were constructed in the frozen-
core potential. The remaining virtual orbitals were formed
using 40 basis set B-spline orbitals. The basis set included
partial waves with the orbital quantum number up to l ¼ 6.
The coupled-cluster equations were solved in a basis set

consisting of single-particle states. In the equations for
singles, doubles, and valence triples, the sums over excited
states were carried out with 35 basis orbitals with the orbital
quantum number l ≤ 6. Because of high computational
demands to the iterative solution of the equations for the
core triple excitations, certain restrictions were applied. We
solved these equations allowing the core excitations from
the ½4d − 6p� core shells, the maximal orbital quantum
number of all excited orbitals was equal to 5, and the largest
principal quantum number of the virtual orbitals where
excitations were allowed was 25. But, as our estimates
showed, the omitted electron excitations can contribute to
the removal energies of the valence states only at the level
of several tens of cm−1 and can change the HFS constants at
the level of 0.1%. Thus, we took the triple excitations into
consideration practically in full.
Energies.—Numerical results for the energies are pre-

sented in Table I. The lowest-order DHF contribution to the
energies (with the inclusion of the Breit interaction) is
labeled “BDHF.” At the next step, we carried out the
calculation in the linearized coupled-cluster single double
(LCCSD) approximation. Then, we subsequently added the
NL terms, valence and core triples into consideration,
designating these calculations as CCSD, CCSDvT, and
CCSDT, respectively. Thus, each subsequent calculation
includes all terms taken into account at theprevious stage and
the additional terms specific for the present approximation.

FIG. 1. Illustration of single (S), double (D), and triple (T)
excitations in the coupled-cluster approach.
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In this way, the most complete calculation is carried out in
the CCSDT approximation.
The removal energies of the valence states obtained on

each stage are presented in the table. We also found
complementary correction due to the basis extrapolation
(ΔEextrap), determined as the contribution of the higher
(l > 6) partial waves. Based on an empiric rule obtained for
Ag-like ions in Ref. [27] and used in Ref. [24], we estimate
this contribution as the difference of two calculations
carried out with lmax ¼ 6 and lmax ¼ 5. We note that this
contribution is comparable with that of the triples. The total
values, presented in the row labeled “Etotal,” are found
as ECCSDT þ ΔEextrap.
For the 5f and 6d states, the quantum-electrodynamic

corrections to the energies are small, and we did not include
them in the full-scale calculation. An estimate of this effect,
made following Ref. [28], shows that it can potentially
change the removal energies of the considered states at the
level of 100–200 cm−1.
The experimental removal energy for the ground state is

231 065ð200Þ cm−1 [25]; i.e., its uncertainty is comparable
to the difference between our total value and the exper-
imental result. The experimental values for the excited
states were taken from Ref. [26].
To illustrate a consistent improvement in the results

when we successively add different coupled-cluster terms,
we present the differences between the theoretical and
experimental values obtained at each stage in the lower
panel in Table I. Comparing ΔCCSDT and ΔLCCSD, we see
that the difference between the theory and experiment
decreased by almost 4 times for the 5f states and 2 times
for the 6d states when we included the NL terms and triples.

For completeness, using the total values of the removal
energies, we present in Table II the theoretical transition
energies counted from the ground state and compare them
with the experimental data [26].
Hyperfine structure constants.—The magnetic dipole

and electric quadrupole HFS constants A and B were
calculated for the low-lying states of 229Th3þ in
Refs. [9,29]. In Ref. [9], the authors also used for the
calculation the coupled-cluster method but a significantly
less sophisticated version. In this work, we carry out a more
complete calculation, including the NL terms and the
valence and core triple excitations. In addition, our calcu-
lation is pure ab initio; no semiempirical methods are
applied.
The results for the magnetic-dipole HFS constants At ≡

A=g [where g ¼ ðμ=μNÞ=I is the g factor and I is the
nuclear spin, I ¼ 5=2] are presented in Table III.
The LCCSD and BDHF values and the difference

between them, ΔðSDÞ, are given in the upper panel of
the table. Rows 4–6 give the corrections due to the NL
terms, ΔðNLÞ, and the valence and core triples, ΔðvTÞ and
ΔðcTÞ, respectively. The CCSDT values, obtained as the
sum of the LCCSD values and the NL, vT, and cT

TABLE I. The removal energies of the low-lying states for
Th3þ (in cm−1) in different approximations, discussed in the text,
are presented. The theoretical total and experimental results are
given in the rows Etotal and Eexpt, respectively. The difference
between the total and experimental values is presented (in
percent) in the row labeled “Diff. (%).’’

5f5=2 5f7=2 6d3=2 6d5=2

EBDHF 207 310 203 393 211 842 207 686
ELCCSD 232 308 227 978 222 871 217 543
ECCSD 231 640 227 307 222 490 217 174
ECCSDvT 230 819 226 538 222 472 217 259
ECCSDT 230 693 226 398 222 268 217 032
ΔEextrap 1055 1032 257 242
Etotal 231 748 227 431 222 526 217 274
Eexpt [25,26] 231 065 226 740 221 872 216 579
Diff. (%) 0.30 0.30 0.29 0.32

ΔLCCSD
a 2298 2271 1256 1205

ΔCCSD 1630 1599 875 836
ΔCCSDvT 809 831 857 922
ΔCCSDT 683 691 654 695
aΔX ≡ EX þ ΔEextrap − Eexpt.

TABLE II. The theoretical and experimental [26] transition
energies (in cm−1) of the excited states counted from the ground
state.

Theory Experiment Diff. (cm−1) Diff. (%)

5f7=2 4318 4325 7 0.16
6d3=2 9223 9193 −30 −0.33
6d5=2 14 475 14 486 11 0.08

TABLE III. Different contributions to At (in megahertz) and
obtaining the recommended value of g are explained in the text.
The experimental values of the HFS constants A [30] are given in
the row labeled “A (experim.).” The uncertainties are given in
parentheses.

5f5=2 5f7=2 6d3=2 6d5=2

BDHF 507 263 831 304
ΔðSDÞ 72 −45 268 −386
LCCSD 579 218 1099 −81
ΔðNLÞ −3.3 −4.6 −17 18
ΔðvTÞ −12 −5.1 −21 −46
ΔðcTÞ −1.5 −2.3 5.8 −1.8
CCSDT 562 206 1067 −111
Basis extrap. −0.2 2.6 −4.5 7.1
Total 562(3) 209(3) 1063(12) −104ð22Þ
Ref. [9]a 573 215 1079 −92
A (experim.) [30] 82.2(6) 31.4(7) 155.3(1.2) −12.6ð7Þ
gðrecommendedÞ 0.1465(24)
Ref. [9] 0.1440(28)
aThe values, listed in Ref. [9], are multiplied by I ¼ 5=2.
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corrections, are presented in the row labeled “CCSDT.” The
basis extrapolation corrections are given in the row labeled
“Basis extrap.” The total values, listed in the row “Total,”
are found as the sum of the CCSDT value and the basis
extrapolation correction.
Based on a comparison of the theoretical and experimental

HFS constants for a number of univalent elements, the
authors of Ref. [9] suggested a method to estimate the
uncertainties of these constants. The uncertainty of theA and
B calculations is expected to be on the order of 3%–6%of the
total correlation correction (found as the difference between
the final and LCCSD value), if this correction does not
exceed 50%. Following this approach, we estimate the
uncertainties of At for the 5f5=2, 5f7=2, and 6d3=2 states as
5% of their total correlation corrections. For the 6d5=2 state,
the correlation correction is very large, and the validity of this
method is questionable. Applying it, we roughly estimate the
uncertainty of At for this state at the level of 20%–25%.
We note that all values presented in Table III were

obtained for the nucleus considered as the charged ball with
uniform magnetization. But, as was shown in Ref. [31], the
nucleus of 229Th has a complex structure and different
collective effects, such as quadruple-octupole vibration-
rotation motion of the nucleus, the single-particle motion of
the unpaired nucleon, and the Coriolis interaction between
this nucleon and the nuclear core, are important. Thus, the
real nuclear magnetization can differ from the uniform
magnetization. To investigate this problem, we follow the
approach developed in Ref. [32]. We can express the HFS
constant A as

A ¼ gA0ð1 − dnucyÞ; ð1Þ

where A0 is the theoretical value calculated at the pointlike
magnetization of the nucleus and dnuc and y are the
parameters depending on the nuclear and electronic struc-
ture, respectively. The quantities g and dnuc are assumed to
be unknown. The experimental value of A can be used on
the left-hand side of Eq. (1), and y can be found from the
calculation.
Indeed, taking into account that dnuc ¼ 0 and dnuc ¼ 1

correspond to the pointlike and uniform magnetization,
respectively, we can find y from Eq. (1) as

y ¼ 1 − At=A0; ð2Þ

where At are given in Table III for different states. We note
that the ratios At=A0 are very stable and insensitive to
different corrections, and we determine the uncertainty of y
at the level of 0.02%.
To find g and dnuc, we use the HFS constants for the

5f5=2 and 6d3=2 states, which are known most precisely
both experimentally and theoretically. Using for each of
them Eq. (1) and solving the system of two equations in two
unknowns, we arrive at

g ≈ 0.1465ð24Þ; ð3Þ

dnuc ≈ 1.7ð2.1Þ: ð4Þ

Thus, the g factor is determined with the accuracy
∼1.5%. Using this value, we find the nuclear magnetic
moment: μI ¼ gI ≈ 0.366ð6Þ. This result is in good agree-
ment with that reported in Ref. [9]: μI ≈ 0.360ð7Þ. We note
that the uncertainty estimate in Ref. [9] did not include
uncertainty due to the magnetization distribution.
For heavy nuclei, the parameter dnuc can vary over a wide

range. For example, for the gold isotopes 197;193;191Au with
the nuclear spin of 3=2, dnuc ¼ −5.5ð6Þ [32]. Our result (4)
suggests that for 229Th the absolute value of dnuc is smaller
and it is most likely positive. As a result, the correction to
the g factor, due to inhomogeneity of the nuclear magneti-
zation, is small but not negligible.
In Table IV, we present the results obtained for the

electric-quadrupole HFS constants B=Q. All designations
in the upper panel of the table are the same as in Table III.
In the lower panel, we present the experimental results for
the HFS constants B [30]. The values ofQ (in eb) are found
as the ratios of B (experim.) and values listed in the row
labeled “Total.”
The values of B=Q obtained in this work turned out to be

between the results of Refs. [9,29] but are somewhat
closer to the former. The experimental uncertainty for

TABLE IV. Different contributions to the electric-quadrupole
HFS constants B=Q [in MHz=ðebÞ)] for 229Th3þ, explained in the
text, are presented. The experimental values of the HFS constants
B [30] are given in the row labeled “B (experim.).” The values of
Q (in eb) are obtained as the ratios of B (experim.) and values
listed in the row labeled “Total”; the recommended value ofQ (in
eb) is given in the row labeled “Q (recommended).” The
uncertainties are given in parentheses.

5f5=2 5f7=2 6d3=2 6d5=2

BDHF 535 572 611 648
ΔðSDÞ 202 251 132 228
LCCSD 737 822 743 877
ΔðNLÞ 38 45 9 9
ΔðvTÞ −55 −57 −34 −27
ΔðcTÞ 3 3 7 7
CCSDT 723 814 725 866
Basis extrap. 6 8 3 4
Total 729(10) 822(13) 728(6) 869(11)
Ref. [9] 725 809 738 873
Ref. [29] 740 860 690 860

B (experim.) [30] 2269(2) 2550(12) 2265(9) 2694(7)
Q 3.11(4) 3.10(5) 3.11(3) 3.10(4)
QðrecommendedÞ 3.11(2)
Ref. [9] 3.11(6)
Refs. [29,30] 3.11ð16Þa
aThis result was obtained using the measurements of Ref. [30]
and calculations of Ref. [29].
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the constants B does not exceed 0.5%, while the theoretical
uncertainties are at the level of 0.8%–1.5%. The uncer-
tainties were determined in the same manner as was done
for the HFS constants A. The constants B are large for all
four considered states, and their fractional uncertainties are
comparable. For this reason, the recommended value was
obtained as the weighted average over four values of Q
given in Table IV. We note the perfect agreement of
our recommended value with the results obtained in
Refs. [9,29,30], but our uncertainty is a few times smaller.
Conclusion.—We have developed the relativistic

CCSDT method with the full inclusion of valence and
core linear triple excitations. Using the theoretical values of
the HFS constants obtained in this work and the exper-
imental results [9], we determined the values of the nuclear
magnetic dipole and electric quadrupole moments.
Analyzing the results obtained at the different stages, we
determined the uncertainties of the recommended values to
be 1.5% for μI and 0.6% forQ. We investigated the effect of
the inhomogeneity of the nuclear magnetization and found
it to be small but not negligible. We conclude that it should
be taken into account to determine the magnetic dipole
nuclear moment μI with accuracy better than 1%. Further
experimental work to measure the HFS (especially mag-
netic dipole) constants more precisely is needed to improve
precision and better understand the effect of nuclear
magnetization. The method developed in this work can
be used for any monovalent system and, when combined
with configuration interaction, can be extended to systems
with 2–6 valence electrons.
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