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We study the elliptic double-box integral, which contributes to generic massless QFTs and is the only
contribution to a particular 10-point scattering amplitude in N ¼ 4 SYM theory. Based on a Feynman
parametrization, we express this integral in terms of elliptic polylogarithms. We then study its symbol,
finding a rich structure and remarkable similarity with the nonelliptic case. In particular, the first entry of
the symbol is expressible in terms of logarithms of dual-conformal cross ratios, and elliptic letters only
occur in the last two entries.
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Introduction.—Understanding of numbers and functions
in QFT in general and in N ¼ 4 SYM theory in particular
has lead to great progress in calculating scattering ampli-
tudes as well as other quantities.
For one-loop quantities, multiple polylogarithms (MPLs)

[1–6] suffice, and this continues to be the case in massless
theories for higher loop orders for sufficiently low numbers
of external particles. MPLs are characterized via their
symbol [7], a tensor product—or word—in so-called letters
logðϕαÞ, where ϕα are functions of the kinematic variables.
These letters encode the singularity and branch-cut struc-
ture and their union is known as symbol alphabet. In cases
where the ϕα are rational (or can be simultaneously
rationalized), the symbol has made it possible to bootstrap
the corresponding amplitudes to very high loop orders, i.e.,
to make an ansatz based on an assumed symbol alphabet [8]
and to fix the coefficients via various constraints such as the
Steinmann conditions [9–11] and cluster adjacency
[12,13]; see, e.g., Refs. [14–19]. For slightly more legs,
however, also symbol alphabets with ϕα occur that are not
simultaneously rationalizable [20–23].
Beyond MPLs, infinite towers of more complicated

functions occur [24–37]. The simplest of these classes of
functions involve integrals over elliptic curves; they have
recently been increasingly well understood in terms of so-
called elliptic multiple polylogarithms (eMPLs) [38–60]. In
particular, also a symbol for eMPLs has been defined
[53,61]; the symbol letters in this case are ΩðjÞðϕ̃αÞ, where
ϕ̃α are functions of the images of the kinematics when

mapped to the torus, which is equivalent to the elliptic
curve.
In N ¼ 4 SYM theory, the first time elliptic functions

occur is the 10-point N3MHV amplitude at two-loop order.
A particular component of it is given in terms of a single
Feynman diagram, the elliptic double-box integral [62],
depicted in Fig. 1. This integral was found to satisfy a first-
order differential equation relating it to the 6D hexagon
[63,64], as well as a further second-order differential
equation [65]. A fourfold rational integral representation
—and a onefold polylogarithmic one—were found [66], as
well as a sum representation [67,68]. So far, however, it has
not been possible to express the elliptic double-box integral
in terms of eMPLs.
In this Letter, we express the double-box integral in

terms of eMPLs and calculate its symbol, finding a rich
structure. In particular, we observe that the symbol satisfies
the first-entry condition occurring for MPLs [69]: the letters
ΩðjÞðϕ̃αÞ in the first entry combine to logðuÞ, where u is a
dual conformal cross ratio. Similarly, the letters in the
second entry combine to logs, such that elliptic letters only
occur in the last two entries. Moreover, the symbol makes
manifest the differential equation relating the elliptic
double-box integral to the 6D one-loop hexagon integral.
The linear reducibility problem in the double box and its

resolution.—Let us start with the dual conformal Feynman
parameter representation of the elliptic double box [66]:

FIG. 1. The elliptic double box and the related 6D hexagon, as
well as their dual graphs.
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Ielldb ¼
Z

∞

0

d4β⃗
1

f1f2f3
; ð1Þ

where

f1¼ β4ð1þβ1Þþβ1;

f2¼ 1þu1β4þv1β1þu2β2þv2β3;

f3¼ð1þu3β4Þβ2þð1þu4β1Þβ3þβ2β3þu3u4u5f1: ð2Þ

The cross ratios are defined by

u1 ¼ x1;3;5;8; u2 ¼ x3;6;8;10;

v1 ¼ x1;8;5;3; v2 ¼ x3;10;6;8;

u3 ¼ x1;3;5;10; u4 ¼ x1;6;5;3; u5 ¼ x1;5;6;10; ð3Þ

where xa;b;c;d ¼ ðx2a;bx2c;dÞ=ðx2a;cx2b;dÞ with xa;b ¼ xa − xb
and dual momenta defined as xa − xaþ1 ¼ pa.
In addition to the manifest dual conformal symmetry, the

double-box integral has two reflections symmetries R1 and
R2 along the horizontal and vertical direction in Fig. 1. The
action of R1 and R2 on the cross ratios fu1;v1;u2;v2;u3;
u4;u5g gives fv1;u1;v2;u2;u4;u3;u5g and fu2; v2; u1; v1;
u4u2=v1; u3v2=u1; u5g, respectively.
As indicated in Ref. [66], three integrations can be

performed in terms of polylogarithms, such that the double-
box integral can schematically be expressed as

Ielldb ∼
Z

∞

0

dβ1ffiffiffiffiffiffiffiffiffiffiffiffi
Qðβ1Þ

p Hðβ1Þ; ð4Þ

where Qðβ1Þ is an irreducible quartic polynomial in β1 and
Hðβ1Þ is a pure combination of MPLs of weight three. The
obstacle in performing the last integration in terms of
elliptic polylogarithms is that the letters of Hðβ1Þ involve
not only

ffiffiffiffiffiffiffiffiffiffiffiffi
Qðβ1Þ

p
but also square roots of two quadratic

polynomials in β1. These polynomials share no roots, hence
there is no way to rationalize the square roots of the two
quadratics without increasing the degree of Qðβ1Þ.
To overcome this obstacle, one needs to trace the origin

of these additional square roots which are related to the
linear reducibility problem of the Feynman parameter
integrals [24,57,70,71]. In our case, these square roots of
quadratics are introduced in the third integration. More
precisely, consider the integral after integrating out β3
and β4,

Z
∞

0

d4β⃗
1

f1f2f3
¼

Z
∞

0

dβ1dβ2
Pðβ1; β2Þ

G2ðβ1; β2Þ; ð5Þ

where the polynomial P has degree 3 and 2 in β1 and β2,
respectively, and G2ðβ1; β2Þ is a pure combination of MPLs
of weight two. Three of the letters of G2ðβ1; β2Þ are
quadratic in β1 and β2, while the other letters are linear

in β1 and β2. It is these three letters that introduce additional
square roots in the third integration. To perform the third
integration without introducing additional square roots, one
needs to make a variable substitution for β1, β2 such that
the letters of G2 are linear in one of the new integration
variables. A crucial observation here is the following: these
three letters, which we denote by q1, q2, and q3, can be
expressed as

q1 ¼ β1ðβ2u2 þ β1v1Þ þ � � � ;
q2 ¼ −u3ðβ2 þ β1u4u5Þðβ2u2 þ β1v1Þ þ � � � ;
q3 ¼ ðβ2 þ β1u4u5Þðβ2u2 þ β1v1Þ þ � � � ; ð6Þ

where “� � �” denote terms linear in β1 and β2. Then it is
natural to introduce the variable substitution

x ¼ β1v1 þ β2u2; β̃2 ¼ u2β2=v1; ð7Þ

so that all letters of G2 are linear in β̃2 [72]. Now the
integration over β̃2 gives

Ielldb ¼
Z

∞

0

dx
y
G3ðx; yÞ; ð8Þ

where

y2 ¼ x4 þ a3x3 þ a2x2 þ a1xþ a0

¼
�
v1
u4

½ð1− u4Þðxþ 1− v2Þ− u1 þ u3v2� þ h1 þ h2

�
2

− 4h1h2; ð9Þ

with

h1 ¼
u2u4
v1

½x2 þ ð1 − u1 þ v1Þxþ v1�;

h2 ¼
�
xþ v1

u4

��
ð1þ x − u1Þ

�
u2u4
v1

− 1

�
þ ð1 − u3Þv2

�
.

ð10Þ

Here, the coefficients ai are polynomials in the cross ratios,
and G3 is a pure combination of MPLs of weight three
whose letters are rational functions of x and y.
At this stage, there is no obstacle to performing the

integration over x and evaluating it in terms of E4 functions
which are recursively defined as [50]

E4

�
n1…nk
c1…ck

; x

�
¼

Z
x

0

dx0 ψn1ðc1; x0ÞE4

�
n2…nk
c2…ck

; x0
�
;

ð11Þ

with E4ð; xÞ ¼ 1, where
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ψ0ð0; xÞ ¼
1

y
; ψ−1ð∞; xÞ ¼ x

y
;

ψ1ðc; xÞ ¼
1

x − c
; ψ−1ðc; xÞ ¼

yc
yðx − cÞ ; ð12Þ

with yc ¼ yjx¼c. The definition of ψnðc; xÞ for jnj > 1 can
be found in Ref. [50]; the kernels (12) are sufficient for the
computation of the double-box integral, though.
We give the final result in terms of E4 functions in the

Supplemental Material [73]. Here, we only record the
arguments ci of the E4’s, which make up the set

�
0;−1;∞;−u2;−v1;−

v1
u4

;−1þ u1
u3

;−u2u4u5;−u2ð1 − u4Þ − v1;
u2ðu3 þ u4 − 1Þ − v1

1 − u3
;
u2u3u4u5 − v1

1 − u3
;

u2u3u4u5 − v1
u4ð1 − u3u5Þ

;
u2ðu3u4u5v2 − u1Þ

u3v2 − u1
;
v1ðu3u4u5v2 − u1Þ
u4ðu1 − u3u5v2Þ

;
u4u5½u2ðu4 − 1Þ − v1� þ v1

u4ðu5 − 1Þ ;
u1u2ðu4 − 1Þ − v1ðu1 − u3v2Þ

u1 − u3v2
;

z1;3;5;8 − 1; z̄1;3;5;8 − 1; z1;3;6;8 − 1; z̄1;3;6;8 − 1;−z3;5;8;10;−z̄3;5;8;10;−z3;6;8;10;−z̄3;6;8;10;
u2u3u4u5 − v1 þ rþ

1 − u3
;
u2u3u4u5 − v1 þ r−

1 − u3

�
; ð13Þ

where za;b;c;dz̄a;b;c;d¼xa;b;c;d, ð1 − za;b;c;dÞð1 − z̄a;b;c;dÞ ¼
xd;a;b;c, and

r� ¼ G−1
45 det G�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Gð45Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G

p

2ð1 − u5Þx21;5x23;10x21;6x23;8x25;10
: ð14Þ

Here, we have introduced the Gram matrix G ¼ ðx2i;jÞwith i
and j running over the set f1; 3; 5; 6; 8; 10g, the elements of
the inverse of the Gram matrix G−1

ij ¼ ðG−1Þij, as well as the
matrix GðijÞ obtained from G by deleting the ith and jth
rows and columns.
From the elliptic curve to the torus: A birational

approach.—To define the pureness of the double-box
integral and to evaluate its symbol, one needs to express
it in terms of iterated integrals on the torus. To this end, we
need to find a bijection between the elliptic curve C and the
torus C=Λ, where Λ is the lattice generated by the periods
ω1 and ω2 of the elliptic curve. Instead of using the map
provided in Ref. [50], here we adopt another strategy: first
we find the standard Weierstrass form Y2 ¼ 4X3 − g2X −
g3 birationally equivalent to C based on its rational point at
infinity, then use the standard map z ↦ ðX; YÞ ¼
ð℘ðzÞ;℘0ðzÞÞ in terms of the Weierstrass ℘ function. This
gives z ↦ ðx; yÞ ¼ ðκðzÞ; κ0ðzÞÞ, where

κðzÞ ¼ 6a1 − a2a3 þ 12a3℘ðzÞ − 24℘0ðzÞ
3a23 − 8½a2 þ 6℘ðzÞ� : ð15Þ

There are several comments in order: (i) the infinity point
ðþ∞;þ∞Þ is mapped to a lattice point, (ii) each point c in
kinematic space corresponds to two points ðc;�ycÞ on the
elliptic curve C and hence to two images on the torus C=Λ,
which we denote by z�c ; these two images satisfy

zþc þ z−c ¼ z−∞ þ zþ∞ ≡ z−∞ mod Λ; ð16Þ
since the corresponding points ðX�

c ; Y�
c Þ, together with

ðX−
∞; Y−

∞Þ, are on the same line. Similarly, one can find that
the torus images z�ci of the kinematics ci in Eq. (13) satisfy

fzþc6 þ zþc7 ; z
þ
c25 þ zþc26 ; z

þ
c6 þ zþc10 þ zþc16 ;

zþc10 − zþc17 þ zþc18 ; z
þ
c16 þ zþc23 − zþc24g≡ 0 mod Λ; ð17Þ

and similar relations for z−ci obtained by Eq. (16), where ci
is the ith element in Eq. (13).
In what follows, we will work in the region given by

positive momentum-twistor kinematics [74,75], where the
four roots of y2ðxÞ come in complex conjugate pairs as
shown in Fig. 2. In this case, the torus image zþc for any real
c is simply given by

zþc ¼
Z

c

−∞

dx
y
: ð18Þ

Hence, zþ∞ is one period of the torus, and we choose it to be
ω2. The image z−c can be obtained by Eq. (16) together with
z−∞ ¼ R

γ−
dx=y, and the other period is ω1 ¼

R
γ1
dx=y,

where the integration contours are defined in Fig. 2.
Now one can introduce iterated integrals on the normal-

ized torus with periods (1, τ ¼ ω2=ω1) [50,53]:

Γ̃
�
n1…nk
w1…wk

;w

�
¼
Z

w

0

dw0 gðn1Þðw0 −w1ÞΓ̃
�
n2…nk
w2…wk

;w0
�
;

ð19Þ

FIG. 2. Four roots of y2ðxÞ in the positive kinematics region and
two integration contours. The contour γ2 which defines ω2 runs
along the real axis.
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with Γ̃ð;wÞ ¼ 1. Such an iterated integral is said to have
length k and weight

P
k nk. The integration kernels gðnÞðzÞ

are generated by the Eisenstein-Kronecker series

∂zθ1ð0Þθ1ðzþ αÞ
θ1ðzÞθ1ðαÞ

¼
X
n≥0

αn−1gðnÞðzÞ; ð20Þ

where θ1ðzÞ ¼ θ1ðzjτÞ is the odd Jacobi theta function.
With these conventions, it is not hard to find

ψ1ðc; xÞdx ¼ ½gð1Þðw − wþ
c Þ þ gð1Þðw − w−

c Þ
− gð1Þðw − wþ

∞Þ − gð1Þðw − w−
∞Þ�dw; ð21aÞ

ψ−1ðc; xÞdx ¼ ½gð1Þðw − wþ
c Þ − gð1Þðw − w−

c Þ
þ gð1Þðwþ

c Þ − gð1Þðw−
c Þ�dw; ð21bÞ

ψ−1ð∞; xÞdx ¼ ½gð1Þðw − w−
∞Þ − gð1ÞðwÞ

þ gð1Þðw−
∞Þ − ω1a3=4�dw; ð21cÞ

as well as ψ0dx ¼ ω1dw, where w�
c are the normalized

torus images z�c =ω1. It is then trivial to express the double-
box integral in terms of Γ̃ functions as [76]

Ielldb ¼ ω1Tell
db;

where Tell
db is a pure combination of Γ̃’s of length four and

weight three.
Equivalently, the functions Γ̃ can be expressed in terms

of the functions E4 [54], which are defined in complete
analogy to Eq. (11) in terms of kernels (n ≥ 0)

Ψ�nðc; xÞdx ¼ ½gðnÞðw − wþ
c Þ � gðnÞðw − w−

c Þ
− δ�n;1ðgð1Þðw − wþ

∞Þ þ gð1Þðw − w−
∞ÞÞ�dw:

ð22Þ
We provide the more compact expression for Tell

db in terms
of E4 ’s, as well as code expanding it in terms of Γ̃’s, in the
Supplemental Material [73].
Let us close this section by remarking on the shuffle

regularization. It will be convenient to introduce ΩðjÞ,
defined via

∂zΩðjÞðz; τÞ ¼ ð2πiÞ1−jgðjÞðz; τÞ;
∂τΩðjÞðz; τÞ ¼ jð2πiÞ−jgðjþ1Þðz; τÞ: ð23Þ

As we shall see in the next section, these ΩðjÞ appear as the
symbol letters. In contrast to Refs. [40,53], we have
included factors of 2πi such that all letters have weight
1 and we can find linear relations with rational coefficients
among them. By definition, ð2πiÞ1−jΓ̃ðj

0
;wÞ ¼ ΩðjÞðwÞ−

ΩðjÞð0Þ. However, Ωð1ÞðwÞ is singular at w ¼ 0, and the
usual shuffle regularization [53] takes Γ̃ð1

0
;wÞ ¼ Ωð1ÞðwÞ −

2 log ηðτÞ with Dedekind eta function ηðτÞ. Here, to be
consistent with the shuffle regularization Gð0; xÞ ¼ logðxÞ
for MPLs which we implicitly used in Eq. (8), we take the
shuffle regularization of Γ̃ð1

0
;wÞ to be

Γ̃
�
1

0
;w

�
¼ Ωð1ÞðwÞ − 2 log ηðτÞ − log

2πi
ω1y0

: ð24Þ

Symbology.—The symbol of Γ̃ can be defined recur-
sively via the differential of Γ̃ in a similar way as for MPLs

[53]. The differential of Γ̃ðnÞ
k of weight n and length k

schematically takes the form

dΓ̃ðnÞ
k ¼

X
i

ð2πiÞji−1Γ̃ðn−jiÞ
k−1 dΩðjiÞðyiÞ; ð25Þ

where the ΩðjÞ are given in Eq. (23) with Ωð−1Þ ¼ −2πiτ;
the precise formula is given in Ref. [53]. It is easy to see
that there would be an overall factor ð2πiÞn−k if we keep
taking the differential recursively. Thus, it is natural to

define the symbol for ð2πiÞk−nΓ̃ðnÞ
k rather than Γ̃ðnÞ

k as

Sðð2πiÞk−nΓ̃ðnÞ
k Þ ¼

X
i

Sðð2πiÞk−nþji−1Γ̃ðn−jiÞ
k−1 Þ ⊗ ΩðjiÞ:

ð26Þ
For the double box, the resulting symbol is of the form

SðTell
dbÞ ¼

1

2πi

X
j

Ωðj1Þðwj1Þ ⊗ � � � ⊗ Ωðj4Þðwj4Þ; ð27Þ

where
P

4
i¼1 ji ¼ 3. Naively, there would be Ωð6Þ’s at most

due to the existence of Ωð−1Þ, but all Ωðj>3Þ’s drop out after
using ΩðjÞð−wÞ ¼ ð−1Þjþ1ΩðjÞðwÞ. At this stage, the sym-
bol has around 106 terms.
To make contact with the more familiar kinematic world,

we can apply Eq. (21a) to
R
b
a ψ1ðc; xÞdx to derive the

following identity:

log
c − a
c − b

þ
X
σ∈�

Ωð1Þðwσ
c − wþ

b Þ −Ωð1Þðwσ
c − wþ

a Þ

¼
X
σ∈�

Ωð1Þðwσ
∞ − wþ

b Þ −Ωð1Þðwσ
∞ − wþ

a Þ: ð28Þ

Further identities involving elliptic letters can be found
using the PSLQ algorithm after numerically evaluating
the letters via the sum representations given in the
Supplemental Material [73]. For example, we found

X6
i¼1

ð−1Þiþ1

�
Ωð1Þðw−

di
− wþ

∞Þ −Ωð1Þðw−
di
− wþ

0 Þ
�

≡ log
d2
d3d5

þ Ωð0Þðwþ
∞ − wþ

0 Þ mod iπ ð29Þ

with di ∈ f∞;−v1=u4; z̄1;3;5;8 − 1; z1;3;5;8 − 1;−z3;6;8;10;
−z̄3;6;8;10g. Moreover, we found complicated identities
involving Ωð2Þ. All these identities turn out to be conse-
quences of Abel’s addition theorem and the elliptic Bloch
relation [77–79].
Combining (28) and the identities found via the PSLQ

algorithm, a dramatic simplification happens: all Ωð3Þ’s
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drop out, only logs remain in the first two entries, and the
symbol ends up with an expression of around 104 terms.
Remarkably, the resulting simplified symbol satisfies the
same physical first entry conditions found in the MPL case
[69], that is the first entries can only be logðxa;b;c;dÞ.
Moreover, the symbol follows certain patterns for the
first two entries observed in the MPL case in
Refs. [23,69,80,81]: the first two entries form the symbols
of Li2ð1 − xa;b;c;dÞ, logðxa;b;c;dÞ logðxa0;b0;c0;d0 Þ, or four-mass
boxes. In particular, the symbol satisfies the Steinmann
conditions [9,10], i.e., discontinuities in partially over-
lapping channels vanish.
The complete symbol can be organized by its seven

elliptic last entries of type Ωð0Þðw; τÞ ¼ 2πiw as well as by
its behavior under the two reflections R1, R2 [73]:

SðTell
dbÞ ¼ SðIhexÞ⊗

�
wþ
c25 −

wþ
∞

2

�

þSðF−Þ⊗
�
w−
∞ −

wþ
∞

2

�
þSðFþÞ⊗wþ

∞

þ
�
SðF17Þ⊗

�
wþ
c17 −

wþ
∞

2

�
þ reflections

�
; ð30Þ

where Ihex is the 6D hexagon integral (normalized to be
pure) in Fig. 1 and Fþ, F−, F17 are weight-3 functions
whose symbols are known from SðTell

dbÞ and recorded in the
Supplemental Material [73]. In particular, Ihex, F−, and F17

are polylogarithmic. The symbol can be written in terms
of 36 rational letters, 24 algebraic letters (in terms of
momentum twistors [74]), and besides the 7 elliptic last
entries, elliptic letters only appear at the third entry of
SðFþÞ and come in only 13 linear independent combina-
tions! (For a list of symbol letters, see the Supplemental
Material [73].) The first three terms in Eq. (30) are
individually invariant under R1 and R2. The fourth term
generates a 4-orbit, as indicated by the “þ reflections.” The
precise behavior of the torus images under the reflections is
given in the Supplemental Material [73].
Finally, let us remark on the differential equation relating

the double box to the 6D hexagon [63,64]. At the level of
the symbol it becomes an immediate consequence of
Eq. (30) since only wþ

c25 in the 7 last entries depends on
u5 and ω1∂u5w

þ
c25 ¼ x21;6x

2
3;8x

2
5;10=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det G

p
.

Conclusion and outlook.—In this Letter, we have calcu-
lated the 10-point two-loop massless double-box integral in
terms of eMPLs and calculated its symbol. This integral is
the sole contribution to a particular component of the
10-point N3MHV superamplitude in planar N ¼ 4 SYM
theory, thus allowing us to draw direct conclusions from
our findings for scattering amplitudes.
We find that the symbol of the double-box integral shows a

very rich structure. Inparticular, the first entryof the symbol is
drawn from the letters logðxa;b;c;dÞ, where xa;b;c;d is a dual-
conformal cross ratio. This means that the double-box
integral, despite being elliptic, satisfies exactly the same
first-entry conditions thatwere argued to occur for amplitudes

built from nonelliptic polylogarithms. Moreover, the second
entry of the symbol contains only letters of log type and
satisfies patterns previously observed in the nonelliptic case.
The last entry of the symbol is also very restricted, containing
only seven possible letters, of elliptic type Ωð0Þ.
Taking the symbol of our result for the double-box

integral, we observed massive cancellations and simplifi-
cations, partially due to identities which we first observed
numerically via the PSLQ algorithm. As we will elaborate
in upcoming work [82], these identities are consequences
of Abel’s addition theorem and the elliptic Bloch relation
[77–79]. It would be interesting to use similar identities to
better understand the 13 linearly independent combinations
in which the elliptic letters occur in the third entry.
Moreover, it would be very interesting to lift this simplified
symbol to a simplified function.
The symbol of the double-box integral manifests the

differential equation relating it to the 6D one-loop hexagon
integral. This suggests that one can bootstrap the symbol
via this differential equation, i.e., taking the known symbol
of the hexagon, appending the elliptic final letter corre-
sponding to the differential equation, and constructing the
remainder of the symbol by imposing integrability [82].
Schematically,

ð31Þ

Traintrack integrals [27], which involve integrations over
a higher-dimensional Calabi-Yau manifold, similarly sat-
isfy differential equations relating them to n-gons [63,64].
While the functional space and corresponding symbol is
not yet understood in these cases, it seems likely that a
bootstrap based on the differential equation will also be
possible in these cases.
In the case of MPLs with rational arguments, the symbol

alphabets occurring for amplitudes as well as their adja-
cency conditions can be understood in terms of cluster
algebras [12,13,16], and a similar understanding is cur-
rently being developed in the case of the Feynman integrals
[83–85] and amplitudes including algebraic letters [86–91].
It would be very interesting to use the data we provide in
this work to extend the cluster program to the elliptic case.
Similarly, it would be interesting to extend the amplitude
bootstrap program to the elliptic case.
The double-box integral we considered in this Letter is

arguably the simplest elliptic integral contributing to planar
N ¼ 4 SYM theory, and to massless QFTs in general. We
expect that the techniques developed in this Letter can also
be applied to more general elliptic integrals, such as the
general 12-point double-box integral, corresponding penta-
box integrals, and double-pentagon integrals. Combining
these integrals with the understanding of prescriptive
unitarity and the corresponding leading singularities
[92,93] would directly allow us to calculate many further
elliptic amplitudes in the massless case. Moreover, also the
double-box integral with generic masses is elliptic [94], and
should be amenable to the techniques presented here.
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