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Systems evolving through aggregation and fragmentation may possess an intriguing supercluster state
(SCS). Clusters constituting this state are mostly very large, so the SCS resembles a gelling state, but the
formation of the SCS is controlled by fluctuations and in this aspect, it is similar to a critical state. The SCS
is nonextensive, that is, the number of clusters varies sublinearly with the system size. In the parameter
space, the SCS separates equilibrium and jamming (extensive) states. The conventional methods, such as,
e.g., the van Kampen expansion, fail to describe the SCS. To characterize the SCS we propose a scaling
approach with a set of critical exponents. Our theoretical findings are in good agreement with numerical

results.
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Aggregation processes [1-3] are ubiquitous in nature,
social life, and technology [4—7]. For instance, they underlie
self-assembly, where preexisting elemental entities bind
together due to local interactions [8,9]. Aggregation proc-
esses take place at diverse temporal and spatial scales ranging
from molecular scales [10—12] and macroscopic scales where
they influence clouds and rain [13-16] to astrophysical scales
where, e.g., aggregation of cosmic dust grains drives plan-
etesimal and planetary ring formation [17-23]. Technological
objects like swarm-bots also demonstrate aggregation and
self-assembling [24]. In social networks, the merging units
may be internet users, enterprises, etc. [7,25,26].

In addition processes, the merging occurs only by
addition of elemental units. Symbolically (see Fig. 1),

A
M + I — Ty (1)

Here, M =1 denotes an elementary entity, a monomer, I
is a cluster comprised of k units, and A is the rate of the
process. Addition processes underlie self-assembly [9—
12,27], internet, and business systems. In materials science,
the addition mechanism dominates when the mobility of
monomers greatly exceeds the mobility of larger clusters
[28-30]. This happens in several surface processes when
adatoms (monomers) diffuse on a substrate [28-37],
synthesis of nanocrystals [38,39], aggregation of point
defects in solids [40,41], etc. The Becker-Doring equation
[42-46] and the Lifshitz-Slyozov-Wagner model also rely
[47,48] on the addition mechanism.

Aggregation is often accompanied by cluster disintegra-
tion that may occur, e.g., due to the accumulation of faulty
steps in self-assembling. Disintegration can proceed spon-
taneously [42-47] or be caused by interactions with
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monomers that trigger either addition or disintegration.
The reaction scheme

N
MA+L =5 M+ + ... +1, (2)
N e

[e|=1,+...+1,=k

represents the breakage into the debris # = {I,, ...l, }. The
collision-controlled fragmentation underlies, e.g., the Oort-
Hulst models [49-53]. Generally, the process (2) describes
the breakup of an aggregate in a collision with energetic
monomers [21,54-57]. The complete breakage,

N
M+TI, — M+...+M, (3)
N————
k+1

is known as the shattering process [5,19,21,58]; it is
included in the Oort-Hulst models. Qualitatively similar
behaviors emerge for partial (2) and complete (3) breakage,
provided that a large number of elementary units is
produced. Here we present the analysis for the shattering
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FIG. 1. (a) Additional aggregation with disintegration. (b) Sche-

matic phase diagram of aggregating systems with disintegration
in the (a, s, 4) domain. The nonextensive SCS lie on a surface that
is surrounded by the extensive jammed states and equilibrium
steady states.
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model (3); the results for the general model (2) are given in
the Supplemental Material [59].

Here we investigate addition-shattering processes and
observe rich behaviors. Besides the equilibrium states (ESs)
and jammed states (JSs), we reveal intriguing super-cluster
states (SCSs) composed of mostly very large clusters. The
SCSs are nonextensive—the number of emerging structures
does not scale linearly with the system size; furthermore,
fluctuations play a dominant role there. Conventional
approaches fail to describe the SCS and we propose a
framework to characterize it. Below detailed definitions of
JSs and SCSs are given.

Addition and shattering rates often vary algebraically
with the aggregate size. We thus consider the rates

A = k9, Sy = Ak (4)
The amplitude in addition rate is set to unity by time
rescaling. The dependence (4) with a < 1 simply reflects
the fact that the aggregation rate is proportional to the
clusters surface (which may be fractal); the aggregation in
networks also obeys (4) with a < 1 [7,60]. The intensity of
the shattering process is quantified by A, while the exponent
s depends on its mechanism; commonly s < 1.

Denote by c,(#) the density of aggregates of size k. With
rates (4), the governing equations read

dc = . > ..

d_t1 =—ci=) jlac;tay j-jec;,  (5a)
f= =

dc

d—tk = ci[(k= 1)y —kci] = k°cie. (5b)

Equation (5b) is valid for all k£ > 2. The right-hand side of
Eq. (5a) reflects that the monomer density decreases due to
aggregation with other monomers and clusters (first and
second terms) and increases due to shattering.

First, we illustrate the generic behavior of the system on
tractable models. Then a conjecture about its general
behavior is confirmed numerically.

Model with (a,s) = (1,0).—In terms of the modified
time, 7 = [ ¢;(¢')d, Eqgs. (5a) and (5b) linearize

él :—<1+/1)Cl—1+/1, (63)

¢ = (k=1)cry = (k+ ey, k>2.  (6b)
Hereinafter f = df /dz. We choose the units where the
mass density conservation reads M; =) ;. ke, = 1.
Solving (6a) for the most natural monodisperse initial
conditions, ¢;(0) = &; |, we obtain

ie—(lH)f _ﬁ_ (7)

Cl(T):1+i 1+l

This exact result shows that different behaviors emerge
depending on whether 4 is less than, equal to, or larger than
Ae = 1: If A > A, = 1, the monomer density c;(z) always
remains non-negative, while for A < 1, the monomer
density formally becomes negative as a function of the
modified time. The requirement ¢; > 0 implies the exist-
ence of 7., such that the system evolves only until
T < Tpaxs Where ¢ (7pa) = 0; the modified time 7.,
corresponds to the infinite physical time ¢ = oo, see
Supplemental Material [59].

In the subcritical case, 1 < 1, the relation between ¢t and ¢
is found from Eq. (7) yielding

1-4

all) = i 1=

Thus the monomer density vanishes at t — oo if 4 < 1.
Other cluster densities remain positive. Near the critical
point (0 < 1 — 1 < 1), they simplify to (see Supplemental
Material [59])

1 1
() =[5 7

Ja-n+oia-2m @
Final densities depend on the initial condition, see Fig. 2.
Hence, for 4 < 1 the system falls into a jammed state—a
nonequilibrium stationary state, with a structure depending
on initial conditions, e.g., Refs. [61,62]. Additionally, in
our systems monomers vanish in the JSs (see Supplemental
Material [59]).

Atthecritical point ¢, = e727(1 — ™) 1if ¢, (0) = 8.
From ¢, (7) = ™%, we get 2t = In(1 + 2¢) and

1 1 k=1 1
cr = 1- , c = ,
1+ 2t V142t 1+ 2t

where ¢ = ) ", ¢ is the total cluster density. All densities
vanish at t = oo independently on initial conditions, yet the

0.2

a=0s=—1

015f \ O

FIG. 2. Left panel: The final densities c¢;(4) = ¢,(t = )
versus A for the model (a,s) = (1,0). Initial conditions are
monodisperse (solid lines); monomer-dimer, specifically ¢, (0) =
0.2 and ¢, (0) = 0.4, (dashed lines). Right panel: The same for the
model (a,s) = (0,—1). Curves: analytical (for 4> 1) and
numerical (for 1 < 1) solutions of rate equations; dots:
Monte Carlo (MC) results. The system size is N = 10°. All
densities vanish in the SCS at A = 1 (left panel) and 1 <1 <2
(right panel). Insets: The final density of monomers c;(1).
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mass density is conserved, M| = 1. The same is true for pure
aggregation, where a single cluster (gel) is eventually
formed in a finite-size system. As we show below, the
ultimate state for a finite size system dramatically differs
here: The final number of clusters varies from realization to
realization and its average scales sublinearly with the system
size. We call such states supercluster states (SCSs), provid-
ing a precise definition below. The SCSs manifest
themselves by the vanishing densities ¢;(o0) for all k in
the thermodynamic limit.

In the supercritical regime A > 1, the cluster densities
relax exponentially fast to the equilibrium steady state that
does not depend on initial conditions, see Supplemental
Material [59]:

T(k)T(1 + 2)

cr(o0) = (4 - 1)m-

(10)

Equations (8)—(10) demonstrate that c¢;(c0) — 0 when
A — 1=+ 0, indicating that at 1 = 1 the system undergoes
a continuous phase transition from the jammed state to the
equilibrium steady state through the critical SCS with
vanishing densities, see Fig. 2.

Model with (a, s) = (0,—1).—The rate equations read

i =—-14+2)c; +(A—-1)c, (I11a)

C"k:Ck_l—<1+A/k)Ck k22, (11b)
The model with 4. = 1 again demarcates different evolu-
tion regimes. In the subcritical regime, 4 < 1, the system
falls into a jammed state with vanishing monomer density,
¢1(Tmax) = 0; the final cluster densities ¢ (7, ) are deter-
mined by initial conditions, see Fig. 2.

At the critical point, 4 = 1, the solution for ¢ > 1 reads

(see Supplemental Material [59])
cr(t) =2 K11+ 20) 75, (12)

indicating that all densities vanish at the critical point, see
Fig. 2. When 4 > 1, the Laplace transform of the densities
is obtained iteratively from Egs. (11) to give

1 (I+2e)et k(1 + 4e)
C pF2,2;2+dese] T(k+ 1+ Je)’

¢ (p) (13)

where &(p) = [ c;(r)e™P"dr and € = (1 + p)~'. The
hypergeometric function appearing in Eq. (13) admits an
integral representation

Ae—1

1 1—
F[2,2;2 + Ze; €] = Ae(1 +/1€)/ dxx(ix)
0

(1 — xe)? (14)

Using Eqgs. (13) and (14), one can extract the asymptotic
behavior of ¢,(7) at T — oo, from the behavior of ¢,(p) at

p — 0. For 1 > 2 the function F is regular at p = 0 and
equals to A(1 + 4)/(4 —2). The Laplace transform &;(p)
has a simple pole, ¢,(p) — ¢;(0)/p as p — 0, indicating
the existence of a steady state size distribution, ¢; (o).

Within the critical interval 1 <1 <2 the function
F[2,2;2 4 Je; €] diverges as p — 0 implying ¢, — O for
7 — oo. Overall, the final densities read

Ci(Tma) (1 = 011) 4 <1
ci(o0) =40 1<2<2  (15)
k(=D (=2T(A)
T(k+1+2) A>2,

with ¢; (7. ) depending on initial conditions. The system
undergoes continuous phase transitions from a JS to a SCS
at 1 = A, = 1 and from a SCS to an ES at 1 = 4,, = 2.
The cluster densities decay algebraically when 1 <1 <2
and logarithmically when A1=2, see Supplemental
Material [59].

Models with s = a — 1.—The rate equations read

=14+ +(A-1)M,, (16a)

er=(k=1)%, —k*(1+A/k)c,.  k>2, (16b)

with M, = > ;5 k“c;. The SCS occurs (see Supplemental
Material [59]) when

1 =iy SA< Ay =2—a (17)

and the final densities are

(1 - 5k,l)ck(rmax) A<l
0 1<1<L2—-a (18)

K~k /T (k-+A+1) .
an'-anz/r(mzﬂ) A>2-a

cr(o0) =

Thus for the three-parameter class of models (4), the SCS
[characterized by ¢;(c0) = 0] emerges when s = a — 1 and
1 <21 <2 — a, with a continuous phase transition from the
SCS to the JS at A=1, and to the ES at A =2 —a.
The relaxation to the JS and ES is exponentially fast,
while to the SCS is algebraic in time, when 1 <1 <2 —a,
and logarithmic for 4,, =2—a, see Supplemental
Material [59].

In the Supplemental Material [59] we show that the
emergence of SCSs is robust to incomplete shattering,
provided that monomers are abundantly produced. For
instance, it occurs if only half of a cluster disintegrates into
monomers. The appearance of SCSs requires a faster
growth with the cluster size of the aggregation rate than
of the fragmentation rate. The latter however should be
large enough to provide abundant monomers feeding the
large clusters.

250602-3



PHYSICAL REVIEW LETTERS 127, 250602 (2021)

A detailed analysis shows that at 1= 4, =1, the
system undergoes an infinite sequence of weak first-order
phase transitions (see Supplemental Material [59]). They
occur at critical values a; = 1, a, = 0.415, a; = 0.224,
etc., and are manifested by an abrupt change of the
relaxation kinetics of the cluster densities [63], see
Supplemental Material [59].

Monomers also play a key role in Becker-Doring models
with evaporation and Oort-Hulst models, yet the production
of monomers never ceases in these models and hence the
jammed and supercluster states do not emerge.

The nature of the SCS.—To understand the difference
between SCSs and gelling states we consider large, but
finite systems of N > 1 monomers. Denote by C;(7) the
total number of clusters of size k and by C(r) the total
number of clusters. The densities ¢ () = Ci(¢t)/N and
¢(t) = C(1)/N usually do not depend on the system size
when N > 1. The rate Egs. (5) describe the evolution for
¢ (1), but they can fail, as the usage of the densities is based
on the tacit assumption that the behavior is extensive, see
Supplemental Material [59]. Generally, finite stochastic
systems are explored by explicitly modeling each
elementary reaction. That is, in a single reaction event a
configuration (C;,C,,...Cy) transforms into one of the
following:

(C;=2,C,+1) rate C;(C, —1)/N, (19a)
(C,=1,C, = 1,Ciyy + 1) rate k“C,Cy/N, (19b)
(Cl =+ k, Ck - 1) rate k5C1Ck/N. (19(:)

(Only the components of an evolved configuration that
differ from the original configuration are shown.) The
reaction rates correspond to the rates (4) and account
automatically for the finiteness of the system. The quan-
tities C,(f) are random variables and the system is
characterized by the averages (Cy(1)), (C(t)C;(1)), etc.

We have performed MC simulations, using the approach
of Ref. [64], and observed that for N > 1 the MC results
for (Cy(#)) coincide with predictions of rate equations
outside the domain, associated with the SCSs, see Fig. 2(b).
In the latter domain, however, the final number of clusters
cannot be predicted by rate equations. We have observed a
sublinear scaling: (Cy(00)) ~N7” and (C(c0))~ N?
with y, 6 < 1, see Fig. 3. The nonextensive behavior of
these quantities explains the vanishing densities: ¢;(o0) ~
N~=0-7) and ¢(c0) ~N~(1=9) in the thermodynamic limit.
This enigmatic transition from extensive to the observed
nonextensive behavior is caused by fluctuations. To gain
analytical understanding, we employ the van Kampen
expansion [5,65]

C (1) = Neg(t) + VNgy (1). (20)
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FIG. 3. Left panel: The total number of clusters in the final SCS
versus N. MC results are shown by dots; fits for the scaling law,
C(o0) ~ N°, are shown by lines. Curves (top to bottom):
(a,s,4) = (1,0,1) with §=4/5, see Eq. (29); (a,s,4) =
(0,—1,125) with §=0.571; (a,s,4)=(0,-1,135) with
5§ =0.599; (a,s,4) =(0,—1,1.5) with §=0.5. Right panel:
SCS in the (a,4) domain. It borders JSs at 4., = 1 and ESSs
at 4y, = 2 — a. The black dots with numbers indicate the values
of 6. The red dots indicate the points of the weak first-order phase
transitions. Inset: The mass distribution kC(o0) for (a,s, ) =
(0,—1,1.25) and N = 10°.

The terms linear in N are deterministic, and the densities
ci(1) obey (5). The terms proportional to /N are stochas-
tic, 17, () are random variables. To proceed we consider the
most simple SCS at (a,s,4) = (1,0,1) for which a
complete analytical solution is available. Using reaction
rules (19) we deduce equations for the averages

d(C)

N—2 ==2(C,(C, - 1)), (21a)
VA% (cyei - 1) -3icic, 21b)
NG - 1yicic - (D). @)

with Eq. (21c) valid for k > 3. Equations (21) involve
(C,Cy) with k > 1. The simplest such quantity, (C?), obeys

d(Ct)

N
dt

=6(C}) —4(C) —4(C}) +W,. (22)

where W = ;. k(k + 1)(C,Cy). One finds (1) = 0 for
all k, see Supplemental Material [59]. Hence (C;) = N¢;
and

(C}) = N>+ NV, (23a)
(C}) = N3¢} + 3N,V + N*2(ip}), (23b)
(C,Cy) = N%cyci + N{mmy), (23¢c)

where V| = (n}) = [(C3) — (C,)?]/N. Using Egs. (21a)
and (22) together with expansions (23), we deduce

Vi 8V = Y k(k+ ey + 20, =267 +2e7%  (24)
k>1
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from which V| = %e’ + % e — % ™%, or

2 1 5
Vl:§\/1+2t+§(1+21)_1—§(l+2t)_4 (25)

in the physical time; that is, fluctuations diverge. Hence we
propose the definition of SCSs, based on this most
prominent property: SCS is a state, where characteristics
of a system (clusters number), associated with fluctuations,
prevail over their deterministic counterparts; the character-
istics scale sublinearly with the system size, leading to
vanishing densities (cluster densities) in the thermody-
namic limit. The total number of monomers

Ci(r) = New + /Ny () (26)

exhibits mostly deterministic decay as long as the deter-
ministic part greatly exceeds the stochastic part. Since
V=t :%e’ for 7> 1, the stochastic part scales as

VN Vi~ V/Ne®/2. At time 7,, when the deterministic part
becomes comparable with the stochastic part,

Ne= 2 ~\/Ne™/2, (27)

the system enters the SCS. Using Eq. (27) and 2t = €% — 1
we obtain an estimate of the time when the SCS emerges,

t, ~N*5, (28)

supported by simulations [Fig. 4(a)]. At ¢ > ¢, the system
resides in the SCS where the van Kampen expansion fails.

Simulations show that after entering the SCS, the system
quickly reaches the final stationary state with vanishing
number of monomers, C; = 0; see Supplemental Material
[59]. Thus, (Cy(o0)) = (Cy(t,)) for k > 2. This allows us to
estimate the final cluster distribution in the SCS from the
crossover time (28) and the deterministic distribution (9),

written in the scaling form as ckz(zz)—le—k/\/ﬁ and
c =~ (2t)7'/2. Using (C;) ~ Nc; and t ~ t, we find

(3)150 (a,8,A) = (1,0,1) (b) (a’ ) )‘) - (1,0,1)

e 05 (% > N = 50000
100 | % N = 100000
o i % o N = 300000

50 o MC @)
— 1.271N¢
0 b LLLL T 200D
0 5 10 0 2 4
N x10* kN3
FIG. 4. (a) Crossover time ¢, as a function of system size N.

Dots are MC results, line is theory, Eq. (28). (b) The final cluster
size distribution in the SCS with (a, s, 1) = (1,0, 1) for different
N. The data collapse of C;(c0)/N? on the scaling function
®(x) ~ e7"*, where x = k/N'/> is observed, b ~ 0.87.

k

(Culoo)) ~NeT, k=i Cloo) ~ NP,

(29)

which fairly well agrees with simulations, Fig. 4(b). The
nonextensive growth has been detected in a few aggrega-
tion-fragmentation processes with standard spontaneous
fragmentation [66,67], pure aggregation [68], and pure
fragmentation [69]. Neither monomers nor fluctuations
play any special role there. In contrast, the SCSs arising
in our models are determined by fluctuations.

To summarize, the systems undergoing addition and
shattering may fall into a nonextensive state that combines
properties of critical and gelling states. As in a critical state,
fluctuations play a dominant role; similar to a gelling state,
mass is mostly accumulated in huge clusters. In the
parameter space, the SCS-related domain is surrounded
by standard extensive states, viz equilibrium and jammed
states. The transitions between SCS and ES or JS are
continuous. Our findings demonstrate that a new approach
is needed to describe the SCS, which is beyond the van
Kampen expansion. The final cluster distribution is char-
acterized by the exponents a, f, y:

(Cy) =~ N"®(k), Kk =kN%, t, ~ NP (30)
The total number of clusters scales as N° with § =y + a.
Additionally, y + 2a = 1, due to mass conservation.

The formation of the SCSs is fluctuation dominated, so
the theoretical understanding is challenging even in the
simplest cases. We believe that the existence of nonexten-
sive SCSs may have practical implications, for instance, in
operating large networks, where SCSs may possibly
emerge, similar to the reported JSs [70].
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