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The Gibbs state is widely taken to be the equilibrium state of a system in contact with an environment at
temperature T. However, non-negligible interactions between system and environment can give rise to an
altered state. Here, we derive general expressions for this mean force Gibbs state, valid for any system that
interacts with a bosonic reservoir. First, we derive the state in the weak coupling limit and find that, in
general, it maintains coherences with respect to the bare system Hamiltonian. Second, we develop a new
expansion method suited to investigate the ultrastrong coupling regime. This allows us to derive the explicit
form for the mean force Gibbs state, and we find that it becomes diagonal in the basis set by the system-
reservoir interaction instead of the system Hamiltonian. Several examples are discussed including a single
qubit, a three-level V-system, and two coupled qubits all interacting with bosonic reservoirs. The results
shed light on the presence of coherences in the strong coupling regime, and provide key tools for nanoscale
thermodynamics investigations.
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The last decade has seen much progress in building a
comprehensive framework of “strong coupling thermody-
namics” [1] that extends standard thermodynamic relations
to take into account the impact of system-environment
interactions [2–23]. Based on the formal concept of the
mean force Gibbs (MFG) state [1,24], strong coupling
thermodynamic potentials have been identified [8–11,14],
detailed entropy fluctuation relations have been shown to
hold [12,13], and quantum measurements have been
included in a stochastic description of strongly coupled
quantum systems [18]. In quantum thermometry, strong
coupling has been found to improve measurement precision
[19,20], while it can be detrimental for the efficiency of
quantum engines [21].
For classical nanoscale systems, the impact of the

environment, or reservoir, beyond setting the system’s
temperature has been known since the 1930s [24].
System-reservoir interactions lead to a modification of the
system’s bare Hamiltonian HS to an effective (mean force)
Hamiltonian which is routinely calculated for classical
systems in chemistry simulations [25]. The resulting
classical distribution or quantum state of the system, known
as the MFG state, is the reduced state

ρS ¼ TrR½τSRðβÞ� ¼ TrR

�
e−βHSR

Z

�
ð1Þ

of the global system-plus-reservoir Gibbs state τSRðβÞ
at inverse temperature β ¼ 1=kBT. The predictions of
strong coupling thermodynamics differ from standard

thermodynamics because the MFG state can deviate sig-
nificantly from the standard Gibbs state τSðβÞ ∝ e−βHS

widely used across all of the natural sciences. Apart from
leading to corrections to the state’s probabilities, the system-
reservoir coupling can lead to ρS maintaining coherences
with respect to the basis of HS at low and intermediate
temperatures [26]. This is significant because coherences are
oftenviewed as an indication of the quantumness of a system
and considered a quantum “resource” [27]. Beyond quan-
tum thermodynamics [26,28–32], coherences play an
important role in some biological processes [33–37], and
may also affect a material’s magnetization behavior [38].
But beyond a few limited examples, the explicit evalu-

ation of the reduced state ρS has generally proven intrac-
table. This lack of immediately applicable expressions of ρS
severely hampers progress in applying strong coupling
thermodynamics methods to concrete systems, as well
as characterizing thermodynamic properties of strongly
coupled equilibrium states, including the presence of
coherences.
Here, we provide explicit forms of the MFG state for

general quantum systems coupled to bosonic environments,
in the weak and ultrastrong coupling limit, respectively. For
the previously unexplored ultrastrong coupling regime, we
develop a new perturbative approach which leads to a
surprisingly neat expression for the MFG state. For the
weak coupling limit we give concrete conditions on the
coupling strength λ for the coupling to be considered
“weak.” Several representative examples are discussed
in both regimes, including a single qubit, a three-level
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V-system, and two coupled qubits all interacting with
bosonic reservoirs.
General setting.—Throughout, we consider global equi-

librium states τSRðβÞ ∝ e−βHSR of a system S coupled to
bosonic reservoir(s) R. For a single continuous reservoir,
the full Hamiltonian HSR is [39,40]

HSR¼HSþ
Z

∞

0

dω
p2ðωÞþ

�
ωqðωÞþλ

ffiffiffiffiffiffiffiffiffi
2JðωÞ
ω

q
X

�
2

2
; ð2Þ

where ½qðωÞ; pðω0Þ� ¼ iδðω − ω0Þ are the commutation
relations for reservoir position and momentum operators
[41]. We choose units with ℏ ¼ 1 and kB ¼ 1 throughout.
The strength of the system-reservoir coupling is scaled by a
dimensionless factor λ, where the coupling is to an arbitrary
dimensionless system operator X ¼ X†, and JðωÞ is a real
function of ω which will later be identified as the reservoir
spectral density. An extension of (2) to two reservoirs will
also be considered.
While for λ → 0 the MFG state ρS clearly reduces

to τSðβÞ ¼ e−βHS=ZS with ZS ¼ Tr½e−βHS �, it will differ
considerably from τS for non-negligible λ. Here, we solve
this problem for a number of physically meaningful
cases. To prepare the derivation, we expand HSR ¼ H0

S þ
HR þ λV as a sum of a reservoir Hamiltonian
HR ¼ R

∞
0 dωω½b†ðωÞbðωÞ þ bðωÞb†ðωÞ�=2 with bðωÞ ¼ffiffiffiffiffiffiffiffiffi

ω=2
p ½qðωÞ þ ipðωÞ=ω� reservoir annihilation operators,
an interaction energy λV ¼ λXB with B ¼ R

∞
0 dω

ffiffiffiffiffiffiffiffiffiffi
JðωÞp

×
½bðωÞ þ b†ðωÞ�, and an effective system Hamiltonian
H0

S ¼ HS þ λ2X2Q. Here, Q ¼ R
∞
0 dωJðωÞ=ω is the reor-

ganization energy [43–45]. The latter has a nontrivial impact
on ρS only if X2 ∝ I. Thus for many qubit problems, for
which X ∼ σr̂ for some Pauli-matrix σr̂, the reorganization
energy can be disregarded as a constant offset. Before
discussing the different coupling limits, we first comment
on the high temperature limit at all finite coupling strengths.
High temperature limit.—For β → 0 the trace over the

reservoir in ρS ¼ TrR½τSRðβÞ� can be performed directly
using a factorization approximation of exp½−βHSR�, see the
Supplemental Material [46]. One finds the cancellation
of the reorganization energy term in H0

S, yielding ρS ¼
τSðβÞ þOðβ2Þ, i.e., the system’s Gibbs state with respect to
the bare Hamiltonian HS emerges.
Weak coupling.—We now turn to arbitrary temperatures

and consider the weak coupling limit, quantitatively
defined in Eq. (5) below. To obtain ρS, we write the system
operator X in terms of the energy eigenoperators Xn for the
system, i.e., X ¼ P

n Xn where n ranges over positive and
negative values. The Xn are defined through ½HS; Xn� ¼
ωnXn with ωn the Bohr frequencies. Since X ¼ X† one has
Xn ¼ X†

−n and ωn ¼ −ω−n, with ω0 ¼ 0. Using the Kubo
expansion we obtain the MFG state, correct to second order
in coupling λ [26,52–55] indicated by the superscript (2),

ρð2ÞS ¼ τS þ λ2β
X
n

τSðXnX
†
n − TrS½τSXnX

†
n�ÞDβðωnÞ

þ λ2
X
n

½X†
n; τSXn�

dDβðωnÞ
dωn

þ λ2
X
m≠n

ð½Xm; X
†
nτS� þ H:c:ÞDβðωnÞ

ωmn
; ð3Þ

where ωmn¼ωm−ωn are frequency differences, the double
sum is over all ordered pairs ðm; nÞ with m ≠ n, and
derivation details are given in the Supplemental Material
[46]. The temperature dependent coefficient DβðωnÞ
includes generally principal part integral transforms of
reservoir correlation functions involving JðωÞ and Bose
number statistics nβðωÞ. These integrals are responsible for
population-coherence coupling, terms that are routinely
ignored in the Bloch-Redfield master equation description
of the dynamics, in which case the steady state simplifies to
τS [56]. The impact of these terms here is that the reduced
state (3) can differ very significantly from τS. In particular,

ρð2ÞS may maintain energetic coherences (coherences in the
basis of the bare Hamiltonian HS) since the commutator

½ρð2ÞS ; HS� ¼ λ2
X
m≠n

ð½Xm; X
†
nτS� þ H:c:ÞDβðωnÞ; ð4Þ

is in general nontrivial.
We highlight that the derivation of (3) requires

jλj ≪ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβPnTrS½τSXnX

†
n�DβðωnÞj

q ð5Þ

to be valid [46]. Beyond the loose requirement that λ ought
to be “small,” this condition gives a well-quantified limit
for λ being in the weak coupling regime at a given β. Note
that the range of λ for which the weak coupling regime and
hence (3) is applicable changes as a function of temper-
ature, with larger temperature generally allowing larger λ.
As a first example for expression (3) we consider the spin-

boson model, i.e., a single qubit with Hamiltonian
HS ¼ ωqσz=2, coherently coupled to a bosonic bath with
X ¼ σz cos θ − σx sin θ. Thismodel describes a charge qubit
in a double quantum dot [26], as well as the stochastic
behavior of spins inmagneticmaterials [38].Coherences have
recently been identified in the MFG state for this example
[26], and our expression (3) reproduces these results [46].
As a novel illustration of the power of (3) we consider

the three-level V-system with Hamiltonian HS ¼ 0j0ih0j þ
ω1j1ih1j þ ω2j2ih2j with ω1;2¼ωq∓Δ=2 and Δ=2 ≪ ωq,

coupled to the reservoir via X ¼ ffiffiffi
2

p jψih0j þ H:c:, where
jψi ¼ ðj1i þ j2iÞ= ffiffiffi

2
p

. These systems can represent bio-
molecules and have attracted significant attention as their
dynamics, according to a Bloch-Redfield master equation,
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gives rise to metastable noise-induced energetic coherences
[57]. These dynamical coherences are long lived, but they
eventually decay. However, the Bloch-Redfield approach
makes approximations which, despite non-negligible envi-
ronment coupling, force τS to be the steady state from the
outset. In contrast, when the reservoir impact is included in

the form of the MFG state ρð2ÞS , energetic coherences persist
in the V-system even in equilibrium.

To obtain ρð2ÞS we identify the eigenoperators and
Bohr frequencies ðXn;ωnÞ as ðj1ih0j;ω1Þ, ðj2ih0j;ω2Þ,
ðj0ih2j;−ω2Þ, and ðj0ih1j;−ω1Þ. Substituted into (3) one
obtains

ρð2ÞS ¼ τSþ λ2
X

p¼0;1;2

fpðβÞjpihpjþ λ2gðβÞðj1ih2jþ j2ih1jÞ:

ð6Þ

Expressions for λ2gðβÞ, as well as the diagonal coupling
corrections λ2fpðβÞ are given in Eq. (SM52) in [46], and
plotted as a function of temperature T in Fig. 1. Of
particular significance is the presence of nonvanishing
coherence gðβÞ between the upper levels j1i and j2i. At
low temperatures coherence arises due to the environment’s
vacuum fluctuations, while it depletes at higher temperature
due to classical fluctuations. Coherence in fact peaks at an
intermediate temperature whose scale is set by ωq, as
confirmed numerically.
Ultrastrong coupling.—To derive the MFG state ρS in

the ultrastrong coupling limit λ → ∞, perturbative tech-
niques following those used at weak system-reservoir
coupling are inapplicable and an entirely new approach
is required. We here develop such a new approach [46], by
reversing the roles of system and perturbation via
H0

S þHR þ λV → λ½V þ λ−1ðH0
S þHRÞ�. Building on

techniques previously used to study unitary Zeno dynamics
[58–61], we here apply it in a very different context: in the
temperature domain and generalized to open systems which
requires carrying out a highly nontrivial trace over the
reservoir. Importantly, we show that all diverging terms
with positive powers of λ cancel. Equipped with our
ultrastrong expansion method one finds, for any quantum
system coupled to a bosonic reservoir, the MFG state

lim
λ→∞

ρS ¼
e−β

P
n
PnHSPn

Tr½e−β
P

n
PnHSPn �

; ð7Þ

where Pn ¼ jxnihxnj are projection operators on the non-
degenerate eigenstates jxni of X. This general analytical
form of the MFG state in the ultrastrong limit is the main
finding of this Letter. To our knowledge, it constitutes a
completely new result not previously suggested or proven
in the literature, not even for specific systems.

The interpretation of the MFG state in (7) is that it is still
a Gibbs state, but with respect to an effective HamiltonianP

n PnHSPn. The impact of ultrastrong coupling is to force
the system to equilibrate according to the eigenstates Pn
of the now dominant system interaction operator X,
rather than with respect to the system Hamiltonian HS.
Analogously to the standard Gibbs state τS ∝ e−βHS ¼P

k e
−βEk jekihekj where the weights in the exponents are

given by the mean value Ek ¼ hekjHSjeki of the system
Hamiltonian in the energy eigenbasis jeki, the ultrastrong
MFG state has weights in the exponent that are given by the
mean value of the effective Hamiltonian in the effective
eigenbasis jxni, i.e., hxnj

P
m PmHSPmjxni ¼ hxnjHSjxni.

While the derivation of (7) assumes nondegenerate eigen-
states jxni [62], extensions to degenerate eigenspaces are
straightforward.
We note that Kawai and co-workers have recently

conjectured the form of the system’s dynamical state at
long times [63,64], i.e., the steady state ϱssS ðt → ∞Þ, to be

ϱconjS ¼ P
n PnτSPn. This form looks similar to our derived

MFG state ρS in (7) but is structurally different, as
exemplified below.

G

F0

F1

F2

2g

2 f0
2 f1
2 f2

0.5 1 1.5 2 2.5 3 3.5

– 0.5

– 0.25

0

0.25

T

FIG. 1. Mean force Gibbs state corrections for the V-system as
a function of temperature T. In the weak coupling limit, with
λ ¼ 0.1, the j1ih2j coherence is λ2g (solid gray) and the
population corrections are λ2fp for the three energy eigenstates
p ¼ 0, 1, 2 (cyan, large-dashed; orange, dotted; light green,
dashed), see Eq. (6). The weak coupling result is valid in the
white-shaded temperature range, where condition (5) is obeyed.
In the ultrastrong coupling limit, limλ→∞, the MFG state ρS is a
specific case of (7), and given in Eq. (SM102) in [46]. Its
coherence is G ¼ limλ→∞h1jρSj2i þ H:c: (solid black) and the
population corrections are Fp ¼ limλ→∞hpjρSjpi − hpjτSjpi
(blue, large-dashed; red, dotted; green, dashed), showing evi-
dence of significant deviations of ρS from τS. Parameters for this
plot: ωq ¼ 3 andΔ ¼ 0.1, and the environment spectral density is
JðωÞ ¼ Qτcωe−τcω with Q ¼ 10 and τc ¼ 1.
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As an illustration of Eq. (7) we consider again the single
qubit, now ultrastrongly coupled to a reservoir with
X ¼ σ · r̂ ¼ σr̂ with r̂ an arbitrary unit vector. With the
projectors on the eigenstates of σr̂, P0 ¼ jþr̂ihþr̂j and
P1 ¼ j−r̂ih−r̂j, the partitioned Hamiltonian becomesP

n PnHSPn ¼ σr̂ cosðθÞωq=2 where r̂ · ẑ ¼ cosðθÞ. A
straightforward calculation then gives the MFG state [46],

lim
λ→∞

ρS ¼
1

2

�
1 − σr̂ tanh

�
1

2
βωq cosðθÞ

��
: ð8Þ

Being diagonal in the basis of the coupling-operator X, for
cosðθÞ ≠ 0 this state clearly maintains coherences with
respect to the Hamiltonian’s σz basis.
For comparison we note that the conjectured steady state

for this system is ϱconjS ¼ 1
2
½1 − σr̂ cosðθÞ tanh ð12 βωqÞ� [64],

which differs from (8) in the positioning of cosðθÞ.
Evidence, based on numerically solving hierarchical
equations of motion (HEOM), that the dynamical steady
state ϱssS is numerically close to ϱconjS has been provided
[64]. However, for the specific inverse temperature used in
the numerics, the difference between ϱconjS and the MFG
state (8) is negligible, and hence the convergence could
equally be to (8) instead [46].
A second example of the application of Eq. (7) is the

three-level V-system for which the ultrastrong coupling
MFG state is given in Eq. (SM102) in [46]. Its deviations
from τS are plotted in Fig. 1, together with the weak
coupling corrections given in (6). Coherence between the
excited states, j1i and j2i, is found to persist at low and
intermediate temperatures T ≲ ωq. As expected, the cor-
rections in the ultrastrong limit are larger in magnitude than
those at weak coupling.
The ultrastrong coupling derivation resulting in Eq. (7)

can further be extended to situations involving two
reservoirs, both at the same inverse temperature β.
Here, we consider two systems S1 and S2 (such as qubits),
that interact with each other via Hint

12 as well as each
coupling to a bath, through λ1B1X1 and λ2B2X2, respec-
tively. This gives the total Hamiltonian Hλ1λ2 ¼ H0

Sþ
λ1B1X1 þ λ2B2X2 þHB with two-system Hamiltonian
H0

S ¼ H1 þH2 þHint
12 þ λ21X

2
1Q1 þ λ22X

2
2Q2, and two-

reservoir Hamiltonian HB ¼ HB1 þHB2. At ultrastrong
coupling we find the MFG state of the combined system
S to be [46],

ρS ¼
e−β

P
mn

P1m⊗P2nHSP1m⊗P2n

Tr½e−β
P

m0n0 P1m0⊗P2n0HSP1m0⊗P2n0 �
; ð9Þ

where Pαn ¼ jxαnihxαnj are projection operators on the
eigenstates jxαni of Xα for α ¼ 1, 2. We note that for two
coupled systems interacting with a common reservoir
[65–67], the same expression (9) will follow. Beyond
the one-dimensional baths considered here, determining

the MFG state for three-dimensional systems, such as a
single spin coupled simultaneously to baths in three
dimensions [38], require multibath extensions of (3). It
would also be interesting to establish what state the system
would take, if it is in contact with two reservoirs at different
temperatures.
As an example for Eq. (9) we consider a two qubit system

with Hamiltonian H1 þH2 þHint
12 ¼ 1

2
ωqðσ1z þ σ2zÞ þ

λSðσ1þσ2− þ σ1−σ2þÞ with σnz ¼ jenihenj − jgnihgnj and
σn− ¼ jgnihenj ¼ σ†nþ for n ¼ 1, 2 and λS the interqubit
coupling. The qubits are each ultrastrongly coupled to a
reservoir in the x direction, i.e., X1 ¼ σ1x and X2 ¼ σ2x with
σnx ¼ σnþ þ σn−. The required projection operators are then
Pn� ¼ j�nih�nj with j�ni ¼ ðjeni � jgniÞ=

ffiffiffi
2

p
. Thus, at

ultrastrong coupling, the MFG state of the two qubits is [46],

ρS ¼
1

4

�
1 − σ1x ⊗ σ2x tanh

�
1

2
βλS

��
; ð10Þ

which is independent of ωq. Clearly, while the system-
environment coupling parameter λ does not feature, the state
does depend on the interqubit coupling λS. For vanishing λS
the state loses its energetic coherences, while at high λS these
are maximized.
For comparison, the conjectured steady state [63] ϱconjS ¼

1
4
f1 − σ1x ⊗ σ2x½sinh βλS=ðcosh βωq þ cosh βλSÞ�g also

has tensor product structure, but depends on ωq. It loses
this dependence and becomes identical to (10) at high
temperatures, βωq ≪ 1. Dynamical convergence to ϱconjS
was numerically evidenced using HEOM [63], but is again
consistent with convergence to (10) for the parameters
chosen, see figure (ii) in the Supplemental Material [46].
Future research could provide a clearer disambiguation

at lower temperatures, however, the HEOM method has
its own convergence restrictions that may limit the range
of parameters that can be explored. A recent alternative
numerical method, TEMPO, is based on time-evolving
matrix product operators [68], and can efficiently describe
the time evolution of quantum systems coupled to a non-
Markovian harmonic environment. Furthermore, analytical
approaches to solve the dynamics when the coupling is
no longer weak could be based on reaction coordinate
methods [15,16,39,40,69–75].
Conclusion and open questions.—For general quantum

systems coupled to a bosonic reservoir two explicit
expressions for the MFG state ρS defined in Eq. (1) have
been derived. Results (7) and (3) are valid for any quantum
system, be it single qubits, V-systems, harmonic oscillators,
or others, and make it possible to immediately identify ρS
for a multitude of problems and applications arising in
quantum thermodynamics, quantum thermometry, magnet-
ism, quantum biology, and beyond. Taken together, expres-
sions (3) and (7) show evidence of the departure from
the textbook Gibbs state, diagonal in HS, whenever the
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system-environment coupling is not negligible and the
temperature is not large. With increasing coupling, the
basis fPng of the system’s interaction operator X becomes
increasingly dominant, culminating in the ultrastrong limit
where it is the only relevant basis.
To further explore this transition will require finding

MFG state expressions for intermediate coupling
strengths—a very difficult analytical problem that may
first be solved with numerical methods. We highlight that,
while it is known that the dynamics of an open quantum
system converges to the MFG state in the weak coupling
limit [26,52–55], the jury is out for the intermediate and
ultrastrong coupling limit. Another open question concerns
extensions of the MFG state forms derived here to systems
coupled to multiple bosonic reservoirs at the same temper-
ature [38], besides the two qubit example given in Eq. (10).
Finally, we expect that extensions to fermionic reservoirs
can readily be made, as the derivations leading to (3)
and (7) do not centrally depend on the bosonic nature of the
reservoir.

We thank Ryoichi Kawai, Steve Barnett, Marco Berritta,
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discussions. J. A. and J. D. C. acknowledge funding
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Note added.—A paper has recently been posted [76]
that derives an ultrastrong coupling master equation and
confirms dynamical convergence to the ultrastrong MFG
state (7) derived here.
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