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Non-Markovian effects are important in modeling the behavior of open quantum systems arising in
solid-state physics, quantum optics as well as in study of biological and chemical systems. The non-
Markovian environment is often approximated by discrete bosonic modes, thus mapping it to a Lindbladian
or Hamiltonian simulation problem. While systematic constructions of such modes have been previously
proposed, the resulting approximation lacks rigorous and general convergence guarantees. In this Letter, we
show that under some physically motivated assumptions on the system-environment interaction, the finite-
time dynamics of the non-Markovian open quantum system computed with a sufficiently large number of
modes is guaranteed to converge to the true result. Furthermore, we show that this approximation error
typically falls off polynomially with the number of modes. Our results lend rigor to classical and quantum
algorithms for approximating non-Markovian dynamics.
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Quantum systems invariably interact with their environ-
ment, and any simulation technique used to model their
behavior needs to capture this interaction. Traditionally,
such interactions are analyzed within the Markovian
approximation, wherein the system dynamics is described
by the Lindbladian master equation [1]. However, a number
of quantum systems arising in solid-state physics [2–5],
quantum optics [6–10], as well as quantum biology and
chemistry [11–14] cannot be modeled accurately within
the Markovian approximation and the non-Markovian
nature of the environment needs to be explicitly taken into
account.
Simulating non-Markovian open quantum systems is

difficult since it is usually not possible to formulate a
dynamical equation for the system state from a given
physical model of the system-environment interaction.
While it is generically expected that non-Markovian open
quantum systems satisfy a master equation of the
Nakajima-Zwanzig form [13,15], or the time-convolution-
less form [16–18], it is usually hard to obtain an explicit
form of such a master equation except when the system is
only weakly coupled to its environment [19–22]. Even
though significant progress has been made in utilizing
influence functionals or their variants for describing and

simulating non-Markovian dynamics [23–31], the worst-
case classical complexity of these approaches increases
exponentially with time. An alternative approach is to
identify and track a set of discrete modes that approximate
the environment [32–34]. This maps the simulation of
the non-Markovian open quantum system to a larger
Hamiltonian or Lindbladian simulation problem, which
can be solved using standard classical [35–39] or quantum
algorithms [40–45].
For Gaussian bosonic environments [46,47], there are

two prominent approaches to identifying these discrete
modes. The first is to use the Lorentzian pseudomode
theory [48–53], wherein the spectral density function of
the non-Markovian environment is approximated by a finite
sum of Lorentzians, each of which corresponds to an
individual bosonic mode coupled to Markovian reservoir.
The second method is to use star-to-chain transformation
[33,34], which uses the Lanczos iteration to identify a 1D
chain of discrete bosonic modes with nearest neighbor
couplings that approximate the environment and map the
problem of computing non-Markovian quantum dynamics
to a Hamiltonian simulation problem. While a systematic
construction of these approximations has been given, their
convergence properties are less well understood. For
instance, classes of models where the Lorentzian pseudo-
mode description is exact are known [48,49], but it is
unknown if it can efficiently approximate a non-Markovian
environment. More attention has been paid toward inves-
tigating the convergence properties of the star-to-chain
transformation—convergence guarantees have been pro-
vided for models with a finite Lieb-Robinson velocity
[54,55], or for bounded memory kernels [56] that can
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possibly have an infinite Lieb-Robinson velocity [57].
However, these analyses do not extend to models with
distributional (and hence unbounded) memory kernels,
such as those commonly encountered in non-Markovian
quantum optical systems [6,58].
In this Letter, we provide general and rigorous con-

vergence guarantees for discrete mode approximations of
non-Markovian Gaussian bosonic environments. We show
that for a wide and physically motivated class of non-
Markovian models, both the Lorentzian pseudomode
approximation and the star-to-chain transformation is
guaranteed to converge and the approximation error falls
off polynomially with the number of pseudomodes. Our
results not only provide the first set of rigorous conver-
gence guarantees for the pseudomode approximation, but
also extend the convergence guarantees for the star-to-chain
transformation to non-Markovian systems described by a
distributional memory kernel, such as those commonly
encountered in quantum optics [6,58].
In order to perform this convergence study, there are

several theoretical challenges that our work resolves. One
of the key issues with analyzing models of non-Markovian
environments is that the environment can support arbitrarily
large energies and the quantum system often has non-
vanishing couplings with high energy environment modes
[6,58]. We identify a set of physically motivated sufficient
mathematical conditions on the system-environment
dynamics that allow for rigorously neglecting the high
energy modes in the environment while studying finite-
time dynamics. While this straightforwardly follows for
problems where the system-environment couplings vanish
at high energies, our analysis also includes distribu-
tional memory kernels. Combining this with an analysis
of the Lorentzian pseudomode approximation and the star-
to-chain transformation within a truncated environment-
energy window, we provide convergence guarantees as well
estimates of the rate of convergence for both of these
methods.
We consider an open quantum system model, with a

d-dimensional quantum system with Hilbert space
HS ¼ Cd (referred to as a “local system”) interacting with
a Gaussian environment whose Hilbert space, HE is
assumed to be a Fock space over L2ðRÞ. We denote by
aω the annihilation operator for this Fock space and
consider Hamiltonians of the form

HðtÞ ¼ HSðtÞ þ
Z

∞

−∞
ωa†ωaωdω

þ
Z

∞

−∞
½vðωÞaωL† þ v�ðωÞa†ωL�dω; ð1Þ

where L∶HS → HS is the operator describing the coupling
of the system with the environment, and v is the frequency
dependent coupling function between the environment and
the system. We point out that the Hamiltonian in Eq. (1) is

only a provably (essentially) self-adjoint operator if v ∈
L2ðRÞ [59]. However, several problems in quantum optics
(e.g., systems with point coupling) are described by v ∈
C∞
b ðRÞ ∩ S0ðRÞ [60] that are tempered distributions and

still result in well defined local system dynamics.
Throughout this Letter, we will be interested in approxi-
mating the dynamics of the reduced state of the local
system—for simplicity, we restrict ourselves to the case
where the environment is initially in a vacuum state,
extensions of the main results of this Letter to initially
excited environment states is provided in Supplemental
Material [61].
First, we outline two physically motivated assumptions

that we make on the model under consideration that are
sufficient conditions to allow us to neglect large environ-
ment frequencies. The first assumption makes mathe-
matically precise the expectation that the effective time-
domain kernel Kv corresponding to the coupling function
v ∈ C∞

b ðRÞ ∩ S0ðRÞ, defined by

KvðtÞ ¼
Z

∞

−∞
jvðωÞj2e−iωtdω;

is approximable by its restriction to a finite frequency
window. Since K can in general be a distribution, we
first introduce a distributional quasinorm to quantify this
approximation error.
Definition 1.—Let v ∈ C∞

b ðRÞ, and let Kv be its corre-
sponding kernel, then for t > 0, define a quasinorm
lðKv; tÞ of Kv via [65]

lðKv; tÞ ¼ sup
f∈AC⪰0

symð½0;t�2Þ
f≠0

1

kfkS½0;t�2

×
Z

t

s1;s2¼0

Kvðt − s1ÞK�
vðt − s2Þfðs1; s2Þds1ds2:

We note that our definition of this quasinorm involves two
applications of the kernel on a test function, which itself is a
function of two time indices—this choice of the quasinorm
is natural since we are interested in quantifying the back-
action of particles emitted into the environment on the local
system dynamics, with there being two time indices needed
to describe the reduced state of each particle in the
environment.
Assumption 1.—The coupling function v ∈ C∞

b ðRÞ is
such that there is a function Vðωc; tÞ which vanishes as
ωc → ∞ ∀ t ≥ 0 and

lðKv − Kvωc
; tÞ ≤ Vðωc; tÞ;

where vωc
ðωÞ ¼ vðωÞ if jωj ≤ ωc and otherwise 0.

By ensuring that the kernel is distributionally approxi-
mable within a finite frequency window, Assumption 1
ensures that the model described by Eq. (1) does not suffer
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from an ultraviolet divergence arising due to the environ-
ment being able to support arbitrarily high frequencies [66].
A number of models commonly considered in practice do
satisfy this assumption: (i) Environments with square-
integrable coupling functions, i.e., v ∈ C∞

b ðRÞ ∩ L2ðRÞ
satisfy Assumption 1 (Proposition 1 in Supplemental
Material [61]). Physically important examples of such
environments include environments with a Lorentzian
coupling function which is typically used to model an
atomic system interacting with an optical cavity [67].
(ii) Markovian environments, which correspond to a fre-
quency independent coupling function vðωÞ ¼ v0 [58], also
satisfy Assumption 1 (Proposition 2 in Supplemental
Material [61]). (iii) Environments modeling retardation
effects, described by coupling functions of the form vðωÞ ¼P

M
i¼1 vie

iωτi are commonlyused tomodel retardation effects
[68]. These environments also satisfy the conditions of
Assumption 1 (Proposition 2 in Supplemental Material
[61]). We point out that while the kernel might be approx-
imable within a finite frequency window, due to the infinite-
dimensional nature of the environment’s Hilbert space, it
does not immediately follow that the reduced state of the
local system is also similarly approximable.
To proceed further, we introduce a second assumption

that ensures physically meaningful joint system-
environment dynamics. To state this assumption math-
ematically, we introduce the N-point Green’s function of
the localized system.
Definition 2 (N-point Green’s function).—∀ s ∈ ½0; t�N ,

GNðs; tÞ ∈ LðHSÞ [69] via

GNðs; tÞ ¼ hvacjUðt; 0ÞT
�YN
i¼1

LðsiÞ
�
jvaci; ð2Þ

where Uðτ1; τ2Þ is the propagator corresponding to the
Hamiltonian in Eq. (1) and LðτÞ ¼ Uð0; τÞLUðτ; 0Þ is the
operator L in the Heisenberg picture.
The physical significance of the N-point Green’s func-

tion is that it determines the projection of the environment
state on the N-particle subspace, as is made explicit in the
following lemma (proved in Supplemental Material [61]).
Lemma 1.—Let jψðtÞi ¼ Uðt; 0Þðjσi ⊗ jvaciÞ, where

jσi is a system state, then

jψðtÞi ¼
X∞
N¼0

jψNðtÞi;

where

jψNðtÞi¼ 1

N!

Z
ω∈R

FNðω;tÞ
�YN
i¼1

v�ðωiÞa†ωi

�
jσi⊗ jvacidω;

and ∀ ω ∈ RN ,

FNðω; tÞ ¼
Z
s∈½0;t�N

GNðs; tÞe−ihω;ðt−sÞids:

Furthermore, as is made precise in Lemma 2 (proved in
Supplemental Material [61]), the N-point Green’s function
is bounded, and consequently the norm of the N-particle
projection of the environment state is also bounded.
Lemma 2.—If v ∈ C∞

b ðRÞ, then
kGNðs; tÞk ≤ kLkN ∀ N ∈ N; t ≥ 0; s ∈ ½0; t�N;

and

kjψNðtÞik2 ≤ kvk2N∞ kLk2Nð2πtÞN
N!

∀ N ∈ N; t ≥ 0:

Our second assumption can be interpreted as a bound on
the rate at which the local system can emit or absorb an
excitation from the environment. Any physically reason-
able model of the environment, despite its non-negligible
couplings with high frequency environment modes, is
expected to satisfy this assumption.
Assumption 2.—∀ t ≥ 0, s ∈ ½0; t�N−1, the map

GNðf·; sg; tÞ∶½0; t� → LðHSÞ is absolutely continuous and
∃ γðtÞ > 0 such that

esssup
fs0;sg∈½0;t�N

k∂s0GNðfs0; sg; tÞk ≤ γðtÞkLkN:

This assumption can be proved for two cases:
(1) Markovian environments, i.e., environments with a
frequency independent coupling constant [vðωÞ ¼ v0]. In
this case, an application of the quantum regression theorem
can be used to show that Assumption 2 is satisfied for such
environments (Proposition 3 in Supplemental Material
[61]). (2) Environments with a square integrable coupling
constant, Assumption 2 can again be rigorously proven
(Proposition 4 in Supplemental Material [61]).
With these two assumptions, we can now prove the

convergence of the pseudomode theory [48] and star-to-
chain transformation [33] for simulating non-Markovian
quantum systems. Our first result, proved in Supplemental
Material [61], rigorously shows that in a finite amount of
time, the localized system cannot excite arbitrarily high
frequencies in the environment, and the environment can
thus be approximated within a finite energy window. More
precisely,
Theorem 1.—Suppose v ∈ C∞

b ðRÞ ∩ S0ðRÞ is a cou-
pling function such that Assumptions 1 and 2 are satisfied.
Denoting by ρðtÞ the reduced density matrix of the local
system at time twhen an initial state jσi ⊗ jvaci is evolved
under the Hamiltonian in Eq. (1) and by ρωc

ðtÞ the reduced
density matrix of the local system at time t when the same
initial state is evolved under the Hamiltonian

Hωc
ðtÞ ¼ HSðtÞ þ

Z
∞

−∞
ωa†ωaωdω

þ
Z

ωc

−ωc

ðvðωÞaωL† þ v�ðωÞa†ωLÞdω; ð3Þ

then
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kρðtÞ − ρωc
ðtÞktr ≤ εðωc; tÞ;

where εðωc; tÞ is the cutoff error given by

εðωc; tÞ ¼
f1ðtÞffiffiffiffiffiffi
ωc

p þ
Z

t

0

f2ðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðωc; τÞ

p
dτ: ð4Þ

Here Vðωc; tÞ is defined in Assumption 1 and

f1ðτÞ ¼
ffiffiffi
2

p
kvk∞kLkð2þ γðτÞτÞeπkvk2∞kLk2τ;

f2ðτÞ ¼
ffiffiffi
2

p
kLk2τð1þ γðτÞτÞeπkvk2∞kLk2τ;

where γðtÞ is introduced in Assumption 2.
The dependence of the cutoff error on ωc is a sum of two

terms—one that falls off as Oð1= ffiffiffiffiffiffi
ωc

p Þ, which can be
interpreted as the consequence of introducing a rectangular
frequency window on the emitted photon wave packet, and
a second term which depends on the error introduced in
approximating the time-domain kernel Kv within a fre-
quency window (Assumption 1). The magnitude of this
error, as given by the functions f1, f2, depends on the
strength of the coupling between the system and environ-
ment (∝ kvk∞; kLk), as well as on the rate at which
particles are exchanged with the environment [γðtÞ intro-
duced in Assumption 2]. The result of Theorem 1 is thus in
line with our intuition that a larger cutoff frequency is
needed for systems which strongly couple to the environ-
ment, and absorb or emit particles very rapidly from the
environment. Furthermore, the error grows exponentially
with time t—this is a consequence of the fact that the local
system can in principle emit an arbitrarily large number of
particles into the environment while only being constrained
by the bound in Lemma 2. In practice, we expect the errors
grow only polynomially with t, with the polynomial to
depend on the maximum number of particles that the local
system can emit into the environment.
Next, we consider the pseudomode method [48], which

approximates the non-Markovian dynamics of the local
system by the Markovian dynamics of a larger system.
Definition 3 (pseudomode description).—An environ-

ment described by M pseudomodes with parameters
fðωi;gi;κi≥0Þ∶i∈f1;2…Mgg has an associated Hilbert
spaceHaux ofM bosonic modes with annihilation operators
a0; a1;…; aM−1. For a local system with Hilbert space
HS ¼ Cd, time-dependent Hamiltonian HSðtÞ ∈ LðCdÞ,
interacting with the environment through the operator
L ∈ LðCdÞ with the initial system-environment state
being jσi ⊗ jvaci, its reduced state at time t is given by
ρðtÞ ¼ Traux½RðtÞ�, where RðtÞ satisfies

_RðtÞ ¼ i½ĤðtÞ; RðtÞ�

þ
XM−1

i¼0

κi
2
½2aiRðtÞa†i − fa†i ai; RðtÞg�;

with

ĤðtÞ ¼ HSðtÞ þ
XM−1

i¼0

ωia
†
i ai þ

XM
i¼1

giðaiL† þ a†i LÞ;

and Rð0Þ ¼ jσihσj ⊗ ðj0ih0jÞ⊗M.
An environment described by M pseudomodes with

parameters fðωi; gi; κi ≥ 0Þ∶i ∈ f1; 2…Mgg corresponds
to a coupling function v̂ which satisfies [48]

jv̂ðωÞj2 ¼
XM
i¼1

κi
2π

g2i
ðω − ωiÞ2 þ κ2i =4

:

In practice, to obtain a pseudomode description that appro-
ximates a given coupling functionv, jvj2 is approximated by a
sum of Lorentzians within a sufficiently large but finite
frequency window, with each Lorentzian corresponding to
an independent pseudomode. Our next result, proved in
Supplemental Material [61], shows that this procedure is
guaranteed to converge. The convergence rate of the pseu-
domode approximationwill, in general, depend on the details
of the coupling function v—in particular, on the growth of its
derivative v0ðωÞ with ω, as well as on the falloff of the
cutoff error εðωc; tÞ, introduced in Theorem 1, with the cut-
off frequency. For typical coupling functions, jv0ðωÞj ¼
O(polyðωÞ) and εðωc; tÞ ¼ O( expðOðtÞÞpolyðω−1

c Þ).
Under these assumptions, we show that the error incurred
in the pseudomode approximation decreases polynomially
with the number of pseudomodes.
Theorem 2 (pseudomode approximation).—Suppose

v ∈ C∞
b ðRÞ ∩ S0ðRÞ is a coupling function such that assu-

mptions 1 and 2 are satisfied and let ρðtÞ be the reduced
state of the local system after evolving an initial state jσi ⊗
jvaci using the Hamiltonian in Eq. (1). Then, there exists a
pseudomode description of the environment (Definition 1)
with M bosonic modes which provides an approxi-
mation ρ̂ðtÞ to the reduced state of the local system such
that kρðtÞ − ρ̂ðtÞktr → 0 as M → ∞. Furthermore, if
jv0ðωÞj ¼ O(polyðωÞ) and the cutoff error εðωc; tÞ ¼
O( expðOðtÞÞpolyðω−1

c Þ), then there exists a pseudomode
description of the non-Markovian system with M bosonic
modes such that the trace-norm error in approximat-
ing the reduced local system state at time t scales as
O( expðOðtÞÞpolyðM−1Þ).
Finally, we consider the star-to-chain transformation,

which maps the non-Markovian environment to a 1D
bosonic tight-binding model with the local system effec-
tively coupled to the first bosonic mode.
Definition 4 (chain description).—An environment

described by a chain of M bosonic modes with parameters
fðωi;giÞ∶i∈f0;1;2;3…M−1gg has an associated Hilbert
spaceHaux ofM bosonic modes with annihilation operators
a0; a1;…; aM−1, For a local system with Hilbert space
HS ¼ Cd, time-dependent Hamiltonian HSðtÞ ∈ LðCdÞ
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interacting with the environment through the operator
L ∈ LðCdÞ with the initial system-environment state
being jσi ⊗ jvaci, its reduced state at time t is given
by ρðtÞ ¼ Traux½Ûðt; 0Þjσihσj ⊗ ðj0ih0jÞ⊗MÛð0; tÞ�, where
Ûðτ1; τ2Þ is the propagator corresponding to the
Hamiltonian

ĤðtÞ ¼ HSðtÞ þ g0ðL†a0 þ a†0LÞ þHE;

with

HE ¼
XM−1

i¼0

ωia
†
i ai þ

XM−2

i¼1

giðaia†iþ1 þ aiþ1a
†
i Þ:

A chain transformation of the environment can be
explicitly constructed by using the Lanczos iteration—this
proceeds by first introducing a frequency cutoff ωc, and
then starting from the mode a0 ∝

R
ωc
−ωc

vðωÞaωdω, applying
the Lanczos iteration with respect to the environment
Hamiltonian. This yields the parameters fðωi; giÞ∶i ∈
f0; 1; 2…M − 1gg for the chain description of the envi-
ronment. By exploiting the previously established con-
nection between the star-to-chain transformation and
orthogonal polynomials [33,70], we show (Supplemental
Material [61]) that, under Assumptions 1 and 2, the star-to-
chain transformation will converge for sufficiently large
number of modes and that the convergence rate is poly-
nomial in the number of modes.
Theorem 3 (star-to-chain transformation).—Suppose

v ∈ C∞
b ðRÞ ∩ S0ðRÞ is a coupling function such that

Assumptions 1 and 2 are satisfied and let ρðtÞ be the
reduced state of the local system after evolving an initial
state jσi ⊗ jvaci using the Hamiltonian in Eq. (1). Then,
there exists a chain description of the environment with M
modes (Definition 4) that provides an approximation ρ̂ðtÞ
to the reduced state of the local system such that
kρðtÞ − ρ̂ðtÞktr → 0 as M → ∞. Furthermore, if the cutoff
error εðωc; tÞ ¼ O( expðOðtÞÞpolyðω−1

c Þ), then the trace-
norm error in approximating the reduced local system state
at time t scales as O( expðOðtÞÞpolyðM−1Þ).
In conclusion, our work provides a rigorous analysis of

Markovian dilations to non-Markovian open quantum
systems. We show that the finite-time dynamics of a wide
class of non-Markovian quantum systems can always be
well approximated by a larger Markovian system, and we
also provide theoretical scalings of how much larger the
effective Markovian system is. Several questions of interest
to open quantum system theory are left open in this work.
One of the questions that we leave unanswered is to study
the class of coupling functions, with possibly distributional
kernels, for which the resulting system-environment
dynamics is well defined. A rigorous study of this problem
would be relevant to advancing the mathematical under-
standing of non-Markovian open quantum system models,

and could lead to a general proof of Assumption 2. Another
direction to pursue would be to improve the exponential
dependence of the error estimates on time t, or to identify
settings in which these error estimates are tight.
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