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A long-standing challenge in mixed quantum-classical trajectory simulations is the treatment of
entanglement between the classical and quantal degrees of freedom. We present a novel approach that
describes the emergence of entangled states entirely in terms of independent and deterministic Ehrenfest-
like classical trajectories. For a two-level quantum system in a classical environment, this is derived by
mapping the quantum system onto a path-integral representation of a spin 1

2
. We demonstrate that the

method correctly accounts for coherence and decoherence and thus reproduces the splitting of a wave
packet in a nonadiabatic scattering problem. This discovery opens up a new class of simulations as an
alternative to stochastic surface-hopping, coupled-trajectory, or semiclassical approaches.
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Introduction.—Many important phenomena across phys-
ics and chemistry are best described by a small quantum
system and a large classical environment; for example,
light-matter interaction, chemical reactions, and qubits. A
prototypical model for all these examples is the crossing
between two electronic states coupled to classical nuclei.
As it is intractable to treat the entire problem with quantum
mechanics, it is necessary to simulate the coupled quantum-
classical dynamics directly [1]. Deriving an approach
which is both computationally efficient and accurate is,
however, a highly nontrivial task. The simplest method
based on classical trajectories is Ehrenfest dynamics, also
known as mean-field theory (MFT) [2]. While this
approach is computationally efficient, it completely
neglects quantum entanglement between the system and
the environment. As a consequence, it is unable to describe
the branching of a nuclear wave packet in a nonadiabatic
scattering problem [3].
Over the last decades, a considerable effort has been

invested in the development of more accurate trajectory-
based methods. A popular approach, especially in simu-
lations of photochemistry, is Tully’s fewest switches surface
hopping (FSSH) [4–6], whose trajectories take stochastic
jumps to simulate wave-packet branching. Although its
original form is known to suffer from overcoherence, there
have been many suggestions to introduce decoherence
corrections [7,8] with little consensus that there is a
definitive solution. Another known way to include entan-
glement is to use coupled trajectories, either on top of

Ehrenfest [9] or surface hopping [10] or through metho-
dologies such as the exact-factorization framework [11–13],
ab initio multiple spawning [14], the quantum-classical
Liouville equation [15], or Bohmian dynamics [16]. A third
possibility is to use interference between path histories and
weight Ehrenfest-like trajectories (obtained from a map-
ping scheme [17–19] that has a close relation to the
Stratonovich–Weyl representation used in the present
Letter [20,21]) by phases and prefactors derived from a
semiclassical propagator based on a real-time path integral
[22–25]. At first sight, decoherence and entanglement
appear to be inherently quantum phenomena which cannot
be described with a fully classical simulation [26]. However,
in this Letter, we introduce a new approach that, in contrast
to the three approaches described above, can capture these
effects based on independent and deterministic classical
trajectories.
Our theory is based on the Stratonovich–Weyl (SW)

phase-space representation of the quantum system, which is
a Wigner representation of discrete spaces [27,28]. For
simplicity, we consider only the two-level case, which
employs the well-known isomorphism to a spin S ¼ 1

2

system, and represent the spin by a classical vector of
length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

. We propose to extend this approach to a
path integral of spin vectors, where the centroid of the spin
path determines the dynamics, and the initial configuration
specifies the weight of each trajectory. This weight, which
is preserved along the trajectory, contains the information
necessary to recover the quantum entanglement between
the system and the environment.
Method.—First, consider an isolated two-level quantum

system with density matrix ρ̂. A convenient classical analog
for this system is given by the Stratonovich–Weyl W
representation [29], which expresses the expectation value
of an operator Â by the integral
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tr½ρ̂ Â� ¼
Z

d2s ρðsÞAðsÞ: ð1Þ

The classical functions are defined as

ρðsÞ ¼ tr½ρ̂ ŵðsÞ�; ŵðsÞ ¼ 1

2
Î þ s · σ̂; ð2Þ

and likewise for AðsÞ, where ŵðsÞ is the SW kernel, Î is the
2 × 2 identity matrix, σ̂ ¼ ½σ̂x; σ̂y; σ̂z� are the Pauli matri-

ces, and s is a vector with magnitude jsj ¼ ffiffiffi
3

p
=2. For the

integration measure we use the shorthand notationR
d2s ¼ ð1=2πÞ R dφdθ sin θ, where φ and θ are spherical

coordinates for the orientation of s. Since each Cartesian
component sj is the SW representation of the spin operator
Ŝj ¼ 1

2
σ̂j, one can think of s as a classical spin vector with

the familiar quantummagnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

of a spin S ¼ 1
2

(where ℏ ¼ 1 throughout).
Next, consider the time evolution of the density matrix.

As is well known, the dynamics of a two-level system is
equivalent to that of a spin 1

2
in an effective magnetic field

H, where the Hamiltonian is Ĥ ¼ H0Î þH · Ŝ. Using this
decomposition, it is straightforward to write HðsÞ ¼ H0 þ
H · s and likewise ρðsÞ ¼ ρ0 þ ρ · s, where ρ0 ¼ 1

2
is fixed

by the normalization. When the Liouville–von Neumann
equation dρ̂=dt ¼ i½ρ̂; Ĥ� is converted to its phase-space
equivalent,

d
dt

ρðsÞ ¼ i tr½ðρ̂ Ĥ−Ĥ ρ̂ÞŵðsÞ� ¼ ρ · ðs ×HÞ; ð3Þ

it follows that the standard precession formula for the
classical spin vector _s ¼ s ×H generates the correct quan-
tum dynamics.
When coupled to a general classical environment

(described by coordinates x, conjugate momenta p, and
masses m), the total Hamiltonian

Ĥ ¼
�
p2

2m
þ UðxÞ

�
Î þ

�
V1ðxÞ Δ�ðxÞ
ΔðxÞ V2ðxÞ

�
ð4Þ

corresponds to H0ðx; pÞ ¼ p2=2mþUðxÞ þ 1
2
½V1ðxÞ þ

V2ðxÞ� and HðxÞ ¼ ½2ReΔðxÞ; 2 ImΔðxÞ; V1ðxÞ − V2ðxÞ�.
The corresponding equations of motion are [20]

_x ¼ p
m
; _p ¼ −

∂H0

∂x −
∂H
∂x · s; ð5Þ

in addition to the spin dynamics as before. While these
equations of motion are equivalent to those of Ehrenfest
dynamics [30], the SW treatment differs in the initial
distribution: while standard Ehrenfest starts from a unique
vector s of length 1

2
(as in the Bloch-sphere picture), the SW

approach averages over all initial spin directions in Eq. (1)

and uses the magnitude
ffiffiffi
3

p
=2. We have recently found that

the latter, called the linearized spin-mapping method, leads
to a better prediction of population dynamics [20,21,31].
Other mapping approaches have also found an effective
spin magnitude of

ffiffiffi
3

p
=2 to be optimal [32,33], and

averaging over initial directions to be beneficial [34], even
with the Ehrenfest spin length [35]. However, one impor-
tant drawback is present in both Ehrenfest and linearized
spin mapping; namely, that the dynamical quantization is
lost. This has the unfortunate consequence that after a
scattering event, the trajectories evolve on a weighted
average of the two product potential energy surfaces, in
contrast with the correct entangled state which splits into
parts on one or the other surface [3]. Wewill now show that
such quantization can be systematically reintroduced by
representing the system by a path integral of spins. In
contrast to standard spin coherent-state path integrals, we
do not require paths to be continuous in the N → ∞ limit
and therefore do not have to deal with the difficulties that
arise when restricting to such paths [36–38].
By construction, the SW representation has an inversion

formula [29]

ρ̂ ¼
Z

d2s ρðsÞŵðsÞ; ð6Þ

with the particular example of the identity, Î ¼ R
d2s ŵðsÞ.

By applying Eq. (6) to both operators in tr½ρ̂ Â� and
inserting resolutions of the identity, we can generalize
Eq. (1) to a path integral of N spins,

tr½ρ̂ Â� ¼
Z �YN

k¼1

d2sk

�
tr

�YN
k¼1

ŵðskÞ
�

×
1

N

XN
l¼1

ρðslÞ
1

N

XN
m¼1

AðsmÞ; ð7Þ

where we symmetrized over the indices l and m and used
Eq. (1) for terms with l ¼ m. Since ρðsÞ is linear in s
[Eq. (2)], it follows that ð1=NÞPl ρðslÞ ¼ ρðs̄Þ (and similar
for A), where we introduced the centroid s̄ ¼ ð1=NÞPl sl.
The expression looks like a classical phase-space average
with a weight function gNðfskgÞ≡ tr½Qk ŵðskÞ�. Note that
if we had used jsj ¼ 1

2
, the weight function would reduce to

that of standard spin coherent-state path integrals [39].
There are, however, significant advantages with our choice
jsj ¼ ffiffiffi

3
p

=2, as has been discussed in previous studies
[20,21].
A practical consideration is that gNðfskgÞ is a compli-

cated complex-valued function that varies rapidly for high
N. However, since the observables depend only on s̄ and
not on the relative geometry, it is possible to rigorously
integrate all degrees of freedom other than the centroid.
This situation is analogous to the standard path-integral
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treatment of a harmonic oscillator (the reason being that the
equations of motion are linear in both cases). Explicitly, we
define

GNðs̄Þ≡
Z �YN

k¼1

d2s0k

�
gNðfs0kgÞδð3Þðs̄ − s̄0Þ: ð8Þ

Note that the weight function gNðfskgÞ is invariant under
global rotations of the spin vectors [40], so that GN is
spherically symmetric, GNðs̄Þ ¼ GNðs̄Þ, where s̄ ¼ js̄j.
Equation (7) thus simplifies to

tr½ρ̂ Â� ¼
Z

d3s̄GNðs̄Þρðs̄ÞAðs̄Þ: ð9Þ

Since the centroid ofN > 1 points on a sphere can reach any
point inside the sphere as shown in Fig. 1(a), the integration
domain of s̄ is the ball js̄j ≤ ffiffiffi

3
p

=2. For N ¼ 1, we define
G1ðs̄Þ ¼ ð2=3πÞδðs̄ − ffiffiffi

3
p

=2Þ, which recovers Eq. (1).
The resulting universal function GNðs̄Þ has several

important properties: (i) it depends only on the centroid
magnitude and not on its direction, (ii) it is real valued,
(iii) it is independent of the Hamiltonian and the initial
conditions. In other words, even though its computation
becomes exponentially hard with increasing N, it only has

to be computed once for a given N, hence the name
“universal.” We have evaluated GNðs̄Þ numerically up to
N ¼ 16 using Monte Carlo simulations [41]. Specialized
algorithms will need to be developed to go beyond this.
Figure 1(b) shows that the universal function consists of a
few positive and negative domains, but the number of nodes
seems to remain small for high N. The simulation will thus
include trajectories with both positive and negative weights
but this does not lead to a severe sign problem [41].
Next, we consider the distribution of the spin compo-

nents, Ŝj. Quantum mechanically these are expected to be
quantized with the eigenvalues � 1

2
, but the integrand in

Eq. (1) is smeared over all spin directions. However, as N
increases, the centroid distribution of Eq. (9) becomes
peaked around s̄j ¼ � 1

2
for all j ∈ fx; y; zg, with heights

that are consistent with the components of ρ̂, as shown in
Figs. 1(c)–1(d). In other words, the path-integral weight
function GNðs̄Þ reintroduces the quantization to the system
that is necessary for quantum entanglement.
Finally, consider time-dependent expectation values.

From a similar argument as used in Eq. (3), it follows that
a homogeneous precession of all spins, _sk ¼ sk ×H,
ensures that Eq. (7) is valid also for the time-evolved
density matrix. Consequently, the centroid evolves in the
same way, _̄s ¼ s̄ ×H, and hence, we do not need to keep
track of the individual spin vectors. SinceGNðs̄Þ is invariant
under global rotations, its value is preserved by the
dynamics, which has the important implication that
Eq. (9) is valid for all times.
In this way, one can obtain the time-dependent expect-

ation values of an isolated two-level system exactly using
the centroid of the spin path integral with any value of N.
For the coupled quantum-classical problem, we propose (in
analogy to standard mixed quantum-classical methods) the
approximation

tr½ρ̂ ÂðtÞ� ≈
Z

dx dp d3s̄GNðs̄Þρðx; p; s̄ÞAðxt; pt; s̄tÞ; ð10Þ

where the phase-space version of the density operator
ρðx; p; s̄Þ involves a Wigner transform of the environment
in addition to the SW transform of the quantum system (and
likewise for A). This equation is the main result in this
Letter and will be referred to as the spin path-integral
method. It is exact at t ¼ 0 and in the limit of an isolated
system for all N. The N ¼ 1 case uses the same dynamics
and spin distribution as the linearized spin-mapping
method, which has been found to work well in many cases
[20,21]. Next, we demonstrate that increasing N further
improves the results due to the quantization of the spin
vector.
Results.—We have applied the spin path-integral method

to Tully’s seminal scattering problems [4], which are well-
known benchmark models as well as proxies for realistic
chemical reactions [42]. The results are compared against

(a) (b)

(c) (d)

FIG. 1. (a) Sketch of a path of spin vectors (red arrows on the
sphere) and their centroid (black arrow inside the sphere). The
spin orientations corresponding to a pure state of the underlying
two-level system are shown as blue circles at sz ¼ � 1

2
. (b) Weight

of s̄ [Eq. (8)], with positive contributions in blue and negative in
red. The negative regions grow in importance for increasing
number of spins, N. (c)–(d) Distribution of the x, y, and z
components of the spin centroid. The distributions become
peaked around the quantum-mechanical eigenvalues � 1

2
with

increasing N, and the relative peak heights approach the
corresponding expectation values of the density matrix, here
plotted for ρ̂ ¼ 2

3
j1ih1j þ 1

3
j2ih2j.
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calculations using numerically exact quantum mechanics
as well as Ehrenfest dynamics and surface hopping.
Simulation details are included in the Supplemental
Material [41].
First, we consider the single avoided crossing (model I) in

the form used by Miller and co-workers [43], with diabatic
surfaces and coupling shown in the inset of Fig. 2. An initial
Gaussian wave packet enters from the left on the lower
surface, ψ1ðx; t ¼ 0Þ ⊗ j1i, with enough kinetic energy for
both product channels to be open. Because of nonadiabatic
coupling, the wave packet splits into two separate wave
packets on the two surfaces and emerges as an entangled
state, ψ1ðx; t ¼ ∞Þ ⊗ j1i þ ψ2ðx; t ¼ ∞Þ ⊗ j2i, on the
right. In Fig. 2 we show the distribution of the final
momentum for two different initial energies. As is well
known, Ehrenfest dynamics (MFT) is unable to capture the
branching of the wave packet, whereas surface hopping
(FSSH) provides a reasonably accurate description for this
model. The N ¼ 1 simulation predicts an envelope that
covers the full range of momenta allowed by energy con-
servation, but lacks the two-peak structure. However, by
increasing N, we find that the distribution smoothly splits
into two parts and thus recovers the correct entangled state.
We emphasize that the dynamics consists of independent

and deterministic trajectories on a weighted average of the
two states, similar to both Ehrenfest dynamics and the
linearized spin-mapping method, and the key difference lies
in the weighting of the trajectories. Because the weights
may be positive or negative, some of these cancel out in

such a way that the ensemble branches when it emerges on
uncoupled surfaces. This cancellation is reminiscent of
more involved semiclassical methods such as Miller’s
forward-backward propagator, which is also known to
capture wave-packet splitting in the present model [22–
24]. However, these approaches are inherently semiclass-
ical, not classical, and include nuclear-coherence effects (to
some level of approximation) via phases and prefactors that
depend sensitively on the trajectory histories and make
sampling difficult. The results of the simpler spin path-
integral method demonstrate that nuclear coherence is not
necessary to recover the correct result. Although the
trajectories also carry a sign, this depends in a relatively
simple manner on a single degree of freedom, is fixed by
the initial sampling, and is preserved by the dynamics.
For Tully’s dual avoided crossing (model II) we reach the

same conclusions, and in the Supplemental Material we
show that the scattering probabilities are in good agreement
with exact wave-packet calculations for a wide range of
initial momenta [41].
Next, consider the more challenging extended coupling

model (model III) shown in the inset of Fig. 3. As before, an
initial wave packet enters on the lower surface from the left
but now the total energy is low enough for the upper
channel to be closed on the right. During the collision, it
thus splits into a transmitted part on the lower surface and a
part on the upper surface that reflects and passes through
the interaction region a second time. Surface hopping is
well known to fail dramatically for systems with recrossing,
because the electronic amplitudes picked up during the first
crossing are inconsistent with the active surfaces [5]. This
“overcoherence” problem arises because the assumption of
a unique trajectory for each electronic density matrix is not
valid [44] and is related to neglecting quantum entangle-
ment. Ehrenfest and various linearized mapping approaches
have also been unable to describe this model [45].
To quantify the overcoherence problems of quantum-

classical simulations, we have calculated the time evolution

FIG. 3. Impurity in the extended coupling model (model III).
The inset shows the adiabatic surfaces (solid) and nonadiabatic
coupling (dashed). A wave packet enters from the left and is
partly reflected. Only the spin path-integral method with N ¼ 4 is
able to correctly describe the second crossing of the interaction
region (results for N ¼ 8, not shown, overlay with N ¼ 4).

FIG. 2. Probability distribution of the nuclear momentum after
an avoided crossing (model I). The inset shows the diabatic
potentials (solid lines) and coupling (dashed line). Awave packet
enters from the left on the lower surface with a narrow
distribution of kinetic energies at roughly 1.5 (left panels) or 5
(right panels) times the asymptotic energy difference. Ehrenfest
(MFT) gives a single peak around the average momentum, while
linearized spin mapping (N ¼ 1) envelopes the exact wave-
packet distribution. For higher N, the spin path-integral method
correctly reproduces the wave-packet branching.
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of the impurity (linear entropy) SL ¼ 1 − tr½ρ̂2� ¼
2ðρ11ρ22 − jρ12j2Þ, which is a measure of entanglement
and is related to the decoherence indicator studied in
Ref. [12] with coupled-trajectory simulations. Here, ρnm
denotes elements of the reduced density matrix in the
adiabatic representation and the results are shown in Fig. 3.
Ehrenfest completely misses the second crossing at about
100 fs (since its trajectories do not reflect), and although
some surface-hopping trajectories do reflect, FSSH is
unable to correctly describe the entanglement in this case.
The spin path-integral method on the other hand reproduces
the correct result.
Another well-known consequence of the overcoherence

problems in surface hopping are erroneous oscillations [46]
in the scattering probabilities as shown in Fig. 4. For the
spin path-integral method, we observe that the calculated
scattering probabilities converge towards the correct values
with increasing N (although reproducing the step as the
upper channel opens appears to be difficult). Note that we
did not need to add decoherence corrections for each
trajectory (as is commonly done to fix surface hopping),
but nevertheless do not observe the problems of over-
coherence for the ensemble as a whole.
Finally, we note that unlike surface hopping, the results

of the present method (like Ehrenfest and other mapping
approaches [22,48]) are not dependent on whether the
adiabatic or diabatic representation is used.
Conclusions.—In this Letter we have showed that

features of quantum entanglement, such as wave-packet
branching and impurity measurements, can indeed be
captured by an ensemble of independent and deterministic
classical trajectories. This discovery opens up a new class

of mixed quantum-classical methods, as an alternative to
surface-hopping, coupled-trajectory, or semiclassical sim-
ulations. It also extends the applicability of mapping
approaches, which have been successful for predicting
electronic coherences but so far have struggled to describe
the nuclear dynamics of scattering problems. The presented
method relies on positive and negative trajectory weights
whose sign cancellation does not become more difficult for
larger systems or longer simulation time. We therefore
expect it to be applicable to complex molecular systems
and condensed-phase problems.
Here we have limited the treatment to two-level systems,

but a multilevel extension already exists for linearized spin
mapping [21] and the spin path-integral extension is
straightforward (although there is no guarantee that GN
will depend on only a scalar variable). Since the SW
formalism can be applied to any symmetry group [49], a
similar treatment could be made also in systems with
different symmetries.
Particularly interesting is the case where ρ̂ is a thermal

density matrix. Since the weights are preserved by the
dynamics, we expect this to be useful for equilibrium
dynamics as the quantum Boltzmann distribution will
automatically be conserved. The details are left to a forth-
coming paper.
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