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Recently, various nonclassical properties of quantum states and channels have been characterized
through an advantage they provide in quantum information tasks over their classical counterparts. Such
advantage can be typically proven to be quantitative, in that larger amounts of quantum resources lead to
better performance in the corresponding tasks. So far, these characterizations have been established only in
the finite-dimensional setting, hence, leaving out central resources in continuous variable systems such as
entanglement and nonclassicality of states as well as entanglement breaking and broadcasting channels. In
this Letter, we present a fully general framework for resource quantification in infinite-dimensional
systems. The framework is applicable to a wide range of resources with the only premises being that
classical randomness cannot create a resource and that the resourceless objects form a closed set in an
appropriate sense. As the latter may be hard to establish for the abstract topologies of continuous variable
systems, we provide a relaxation of the condition with no reference to topology. This envelopes the
aforementioned resources and various others, hence, giving them an interpretation as performance
enhancement in so-called input-output games.
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Introduction.—The search of a unified framework for
describing the nonclassical properties of quantum mechan-
ics has led to the development of quantum resource theories
[1]. Quantum resource theories are abstract structures built
on the notions of free states and free operations. The former
are quantum objects that have no resource content, and the
latter are maps that do not convert free states into resource
states. As an example, in the resource theory of entangle-
ment, separability is related to free states, and local
operations assisted by classical communication are free
operations. To quantify the resource content, the notion of a
resource measure is introduced. These are functions that do
not increase under the action of free operations. The well-
known max-relative entropy of entanglement [2,3], the
robustness of coherence [4], and the accessible information
in quantum-to-classical channels [5] are examples of such
measures.
When applied to quantum information theory, an impor-

tant milestone of these abstract theories is their ability to
point out practical communication tasks in which quantum
resources provide an advantage over their classical counter-
parts [4–12], see also the experimental verification of such
advantage [13,14]. Moreover, the provided outperformance
is quantitative, in that higher resource content relates to
better performance. For example, the resource measure
known as the best separable approximation [15] equals the
overhead that an entangled state can provide over all
separable states in the task of subchannel exclusion

[16,17], and the measure known as incompatibility robust-
ness [18] equals the advantage that incompatible quantum
measurements provide over all compatible ones in the task
of state discrimination [19–23].
So far, the proofs of the practical advantage have been

limited to the case of finite-dimensional resources, with the
exception of measurement resources, for which the con-
nection has been recently extended to include also the
case of continuous variable systems [24]. In this work, we
provide a method for extending the known finite-
dimensional proofs to the infinite-dimensional regime in
the missing cases of quantum states and channels. This
encompasses various infinite-dimensional quantum resour-
ces, for which an operational advantage has not been
formerly established, such as entanglement, nonclassical-
ity, coherence, and the quantum marginal problem of
quantum states, as well as broadcasting and the property
of being entanglement breaking of quantum channels.
Our extension procedure relies on approximating con-

tinuous variable quantifiers by their finite-dimensional
counterparts. This results in quantifiers that enjoy many
basic properties required from a proper resource measure
such as monotonicity, convexity, and lower semicontinuity.
These technical requirements account for the fact that free
operations and convex mixtures cannot increase the re-
source content, and to the ability of witnessing resources
despite small fluctuations. However, the desirable property
of faithfulness and the central result of this Letter, that is
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proving that infinite-dimensional resources give an opera-
tional advantage, require more careful consideration. The
discussion on these properties can be divided into two
cases: either one requires them precisely, a case for which
we provide sufficient topological constraints, or one that
requires them approximately, in which case we provide
sufficient algebraic constraints.
Concerning the first case, in the finite-dimensional

setting, faithfulness and the operational advantage require
the set of free states to be closed. This is also expected in
the infinite-dimensional case, where, however, sets might
have nonequivalent closures. We show that a natural choice
for the appropriate topology arises from the relevant
quantum tasks. For sets of free objects that are closed in
such topology, our extension procedure results in estab-
lished faithful infinite-dimensional quantifiers. As each
step of the procedure is finite dimensional and, hence,
carries the connection between resource content and
a quantum advantage, the limit procedure gives infinite-
dimensional resources the sought connection. More
precisely, we show that infinite-dimensional quantum
resources lead to a nonclassical advantage in so-called
input-output games. These are games in which a
fixed set of quantum messages has to be communicated
through a channel in an optimal manner. We exemplify the
use of the topological criterion with central resources
related to nonclassicality, coherence and asymmetry of
states, as well as the entanglement breaking property of
channels.
Concerning the approximate case, our extension proce-

dures are not unique, i.e., different approximation proce-
dures may lead to different quantifiers. Whereas this is not
the case when the above closure requirement is fulfilled, we
introduce another condition on the free set, under which
there exists a family of equivalent extension procedures.
This requires the possibility of an extension procedure
that uses only free operations. Under this condition, the
extension procedures result in quantifiers, for which the
game interpretation holds. Furthermore, these quantifiers
are faithful on the closure of the free set. This is in line with
the finite-dimensional setting, where quantifiers separate
the free set from objects that are outside of its closure. This
algebraic constraint is demonstrated with entanglement
of states, the quantum marginal problem, and the broad-
castability of channels.
Resource quantification in the finite-dimensional

setting.—We concentrate on two types of resource quanti-
fiers. The first consists of robustness measuresRF;N , where
F is the (convex and closed) free set and N is the noise set.
In our applications, the noise set will be either all quantum
channels (yielding the generalised robustness) or the free
set (yielding the free robustness). Robustness measures
quantify the amount a given resource channel Λ can resist
mixing with noise channels Λ̃ ∈ N before the resource is
lost. Formally, we have, [9,12,25]

RF;NðΛÞ ¼ min

�
t ⩾ 0jΛþ tΛ̃

1þ t
∈ F; Λ̃ ∈ N

�
: ð1Þ

The second type of resource quantifier is the convex weight
WF, i.e., the best free approximation of a resource channel
Λ. Formally, we define, [15–17]

WFðΛÞ ¼ min fμ ⩾ 0jΛ ¼ μΓþ ð1 − μÞΛFg; ð2Þ

where the optimization is over all channels Γ and all free
channels ΛF ∈ F. A possible intuition behind the convex
weight is the questionofhow frequently a free channelΛF can
be used in the preparation procedure of a resource channelΛ.
Both quantifiers RF;N and WF can be cast as conic

programs, which allows their evaluation in the dual form;
see, for example, Refs. [9,12] for the robustness and
Refs. [16,17] for the weight. For the dual formulation,
we need the Choi presentation of the channels, i.e.,
JΛ ≔ ð1=dÞPij jiihjj ⊗ ΛðjiihjjÞ, so that

1þRFðΛÞ ¼ max
Y

tr½YJΛ�
s:t:∶ Y ⩾ 0; tr½YT�⩽1 ∀ T ∈ JF;

ð3Þ

and

1−WFðΛÞ ¼min
Y

tr½YJΛ�
s:t:∶ Y ⩾ 0; tr½YT�⩾ 1 ∀ T ∈ JF;

ð4Þ

where Y constitutes a witness and JF is the image of the
free set F under the Choi isomorphism.
It should be noted that the evaluation through the dual

holds when the Slater conditions hold. First, this requires
the problems to be finite, and, second, for the convex
weight, the required (feasible interior point) condition can
be verified by choosing Y ¼ α1 for large α > 0. For the
robustness one requires the existence of a pointΛF ∈ F and
a number α > 1 such that αJΛF

− JΛ is an interior point of
the cone CJN defined by the noise set N. In our noise sets,
the existence of some full-rank point (such as the max-
imally mixed state) in the free set guarantees the Slater
condition to hold; cf. Refs. [12,17] for more details.
The dual formulation can be used to relate the resource

measures to the performance a channel Λ provides in a
discrimination [9,12] or an exclusion [17] input-output
game. The relevant games G consists of input quantum
states fϱaga, i.e., positive unit-trace operators, a quantum
measurement fMbgb, that is a positive operator valued
measure (or POVM for short), i.e.,Mb ⩾ 0 for every b andP

b Mb ¼ 1, where 1 is the identity operator, and a score
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assignment fωabgab. The payoff P of the game G for a
given channel Λ reads

PðΛ;GÞ ¼
X
a;b

ωabtr½ΛðϱaÞMb�: ð5Þ

To relate such games to the resource quantifiers,
one can interpret a witness Y as a game. We write Y ¼P

ab ωabϱ
T
a ⊗ Mb, cf. Ref. [26], which makes the object

functions of Eqs. (3) and (4) special instances of the payoff
function in Eq. (5). Clearly, optimal witnesses Yr for the
robustness and Yw for the weight, with their respective
instances of the game GYr and GYw , lead to PðΛ;GYrÞ ⩾
½1þRF;NðΛÞ�maxΛF∈FPðΛF;GYrÞ and PðΛ;GYwÞ⩽½1−
WFðΛÞ�minΛF∈FPðΛF;GYwÞ. To make these inequalities
tight, one writes Λ using Eqs. (1) and (2), and notices that
the games are linear in Λ. This leads to

sup
GN

PðΛ;GNÞ
maxΛF∈FPðΛF;GNÞ

¼ 1þRF;NðΛÞ ð6Þ

and

inf
G

PðΛ;GÞ
minΛF∈FPðΛF;GÞ

¼ 1 −WFðΛÞ; ð7Þ

where the optimization goes as follows: when the noise set
coincides with the set of channels, or one considers the
convex weight, the optimization runs over those games GN
that have a non-negative payoff for any channel, and for the
case N ¼ F, one optimizes over those games that have a
non-negative payoff for the free set. Also, the games
resulting in a zero denominator are excluded.
We note that the above connections between resource

quantifiers and quantum games hold also for channel
tuples. As the extension is straightforward, i.e., the chan-
nels, the respective witnesses, and the games are replaced
by tuples, we have spelled the connection in the
Supplemental Material, Sec. A [27]. We further note that
quantum states can be seen as quantum channels with a
trivial input. Hence, all the above results on quantum
channels work also for quantum states. In this case, the
corresponding game has a trivial input as well, a fact
that renders the games into subchannel discrimination
[7,9,12,23] or subchannel exclusion tasks [16,17].
Resource quantification in the infinite-dimensional

setting.—From here on, we concentrate explicitly on the
robustness measures, as the procedure for the convex
weight can be obtained with very similar techniques.
The free set of channels F is now a convex subset of
the set of all Schrödinger channels (between operators on
separable Hilbert spaces H and K).
Our technique is based on a finite-dimensional approxi-

mation of the general resource measures. There are several
ways to do the approximation, but we concentrate on a

particular method. We say that two sequences ðαnÞn and
ðβnÞn of channels form an approximation procedure if the
following five conditions hold: (i) αn is a channel within a
finite-dimensional subspace Hn of H and βn is within a
finite-dimensional subspace Kn of K and (ii) for any states
ϱ on H and σ on K, kϱ − αnðϱÞktr → 0 and kσ −
βnðσÞktr → 0 as n → ∞. These conditions ensure that
the approximations use only finite-dimensional systems
and that each state can be approximated. The remaining
three conditions are not relevant for understanding our
main results, but they guarantee some technical details for
our proofs, such as monotonicity of the approximation
procedure: (iii) whenever ϱ is supported by Hn then
αnðϱÞ ¼ ϱ and similarly for a state σ supported by Kn,
and (iv) if σ is injective (i.e., has strictly positive eigen-
values), then βnðσÞ is of full rank within Kn. Moreover,
(v) we require that, when m⩽n, αn∘αm ¼ αm and
βm∘βn ¼ βm.
As an example, take an increasing sequence ðHnÞn of

finite-dimensional subspaces of H such that the closure of
their union is H. Define the channels αnðϱÞ ¼ PnϱPn þ
tr½ϱP⊥

n �ϱ0 where Pn is the orthogonal projection onto Hn
and ϱ0 is some fixed state within the first space H1. By
defining the channels βn in a similar manner, we clearly get
an instance of an approximation procedure.
Suppose that A ¼ fαn; βngn is an approximation pro-

cedure. Using this, we denote Fn ≔ fβn∘ΛF∘αnjΛF ∈ Fg
and Nn ≔ fβn∘ΛN∘αnjΛN ∈ Ng. We further denote the
standard closures of these finite-dimensional sets by F̄n and
N̄n. We easily see that the sequence of finite-dimensional
robustnesses ½RF̄n;N̄n

ðβn∘Λ∘αnÞ�n related to this approxi-
mation procedure is increasing (see Supplemental Material,
Sec. B [27]). We define the approximate robustness RA

F;N

as the supremum of the finite-dimensional steps. According
to the above, this is the limit of RF̄n;N̄n

ðβn∘Λ∘αnÞ as
n → ∞.
To see that RA

F;N is a proper resource measure, we note
that as a pointwise supremum of a family of convex lower
semicontinuous functions, RA

F;N is also convex and lower
semicontinuous. Also, RA

F;N is nonincreasing under free
operations, i.e., operations that do not map elements of F
outside of F, see Supplemental Material, Sec. B [27].
Another property required from a resource measure is
faithfulness, i.e.,RA

F;NðΛÞ ¼ 0 if and only if Λ ∈ F. As this
property depends on the topological properties of the set F,
we will comment on this later. We note that the kind of
dependency is not specific to the approximate robustness,
but it also affects the original one RF;N .
The approximate robustness has an interpretation as

performance in input-output games. To see this, we note
that the finite-dimensional results from the previous section
apply to any convex and compact free set F, when N is
either F or the whole set of channels. As the set N maps
surjectively to the corresponding set Nn of channels (free or
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whole) fromHn toKn, the robustness measureRF̄n;N̄n
has a

game interpretation for each n. More specifically, Eq. (6)
leads to

sup
n

sup
Gn

Pðβn∘Λ∘αn;GnÞ
supΛF∈Fn

PðΛF;GnÞ
¼ 1þRA

F;NðΛÞ; ð8Þ

where the second supremum runs over all games Gn on the
set of channels between Hn and Kn such that PðΛn;GnÞ ⩾
0 for all Λn ∈ Nn.
In principle, the quantity RA

F;N can depend on the
approximation procedure. However, it is always a lower
bound on the actual robustness, as defined in Eq. (1), and
there is a simple sufficient condition for these robustnesses
to agree. Namely, if the sets F and N are suitably closed,
then the approximation procedure reaches RF;N .
A natural choice for the topology is related to the games.

One can ask for any given input, i.e., a trace-class operator
ϱa, and any given output, i.e., a bounded operator Mb,
whether a sequence (or a net) of channels ðΛnÞn converges
to a channel Λ in the sense that tr½ΛnðϱaÞMb� →
tr½ΛðϱaÞMb� as n → ∞. We denote the topology associated
with this type of convergence by τ. When F is closed with
respect to τ and N is the whole set of channels or N is τ
closed, RA

F;N ¼ RF;N for any approximation A. In this
case, the approximate robustness (as well as the original
one) are faithful. We summarize these ideas in the follow-
ing Theorem, the detailed proof of which is presented in the
Supplemental Material, Sec. C [27].
Theorem 1.—Let the free set be τ closed. Whenever N is

τ closed or the whole set of channels, we have RA
F;NðΛÞ ¼

RF;NðΛÞ, and the analogically defined approximate weight
WA

FðΛÞ ¼ WFðΛÞ for any approximation procedure, and
all quantifiers are faithful. If, furthermore, N ¼ F or N is
the whole set we have

sup
G

PðΛ;GÞ
supΛF∈FPðΛF;GÞ

¼ 1þRF;NðΛÞ; ð9Þ

where the outer supremum runs over those games that have
a positive payoff in the set N, whenever the right-hand side
is finite. Moreover, one has

inf
G

PðΛ;GÞ
infΛF∈FPðΛF;GÞ

¼ 1 −WFðΛÞ; ð10Þ

where the infimum runs over those games that have a
positive payoff for any channel, and we omit the games that
result in a zero denominator.
For completeness, we note that the statement on gener-

alized robustness can be extended to the max-relative
entropy measure, as the two bear a simple relation (see
Supplemental Material, Sec. D [27]).

Examples of resources under the topological
constraint.—As an application of our Theorem 1, one
can take channels with a trivial input. These correspond
to quantum states, and the topology τ reduces to the well-
known σ-weak topology generated by bounded operators.
In this topology a sequence of states ðϱnÞn converges to ϱ if
for any bounded operator B we have tr½ϱnB� → tr½ϱB�
as n → ∞.
The use of this abstract topology is easiest illustrated by

the resource of nonclassicality arising from the negativity
of quasiprobability distributions. In this case, the free set
consists of states ϱ for which the probability density
tr½ϱDðzÞΔλDðzÞ†� is non-negative. Here DðzÞ is the dis-
placement operator, Δλ ¼ ð1 − λÞP∞

n¼0 λ
njnihnj, and λ ¼

ðsþ 1Þ=ðs − 1Þ with s referring to the s parametrization of
quasiprobabilities. For λ ¼ 0 we recover the Q function,
for λ ¼ −1 one has the Wigner function, and for λ → −∞
one gets the P function. Importantly, for −1⩽λ < 1, the
operator DðzÞΔλDðzÞ† inside the trace is bounded. This
relates exactly to the topology we are concerned with, i.e.,
tracing states against bounded operators. Clearly, any
sequence of states for which the trace is non-negative will
output a non-negative number on the limit. Hence, the set of
states with a non-negative quasiprobability distribution
with λ ∈ ½−1; 1Þ is closed. Within this interval, only values
up to λ < 0 can result in negative quasiprobabilities. Thus,
Theorem 1 can be applied to the resource given by the
negativity of quasiprobability distributions. For an inter-
ested reader, we have made the above statements precise in
the Supplemental Material, Sec. E [27].
On top of nonclassicality, our result applies to the free

sets related to coherence and asymmetry of states, as well as
to the entanglement breaking property of channels, thus,
generalizing the results of Refs. [4,31,37] to the infinite-
dimensional setting. The only technical result needed for
the generalization is the τ closedness of the related free sets,
which we prove in the Supplemental Material, Sec. E [27]
for the mentioned cases.
Approximation with no reference to topology.—We give

another sufficient condition under which the approximate
quantifiers satisfy the counterparts of Eqs. (9) and (10).
Here, the approximate robustness has again a clear opera-
tional interpretation as performance in general (i.e., pos-
sibly infinite-dimensional) games, cf. Eq. (8). This is
summarized in the following Observation, the proof of
which is given in the Supplemental Material, Sec. F [27].
Observation 1.—Let N be the free set F or the whole set

and the approximation procedure A ¼ fαn; βngn be such
that Fn ⊆ F and Nn ⊆ N for all n. Now Eqs. (9) and (10)
hold when one replaces the robustness RF;N by RA

F;N and
WF by WA

F. In this case we do not require τ closedness of
the free set F. In particular, the approximate quantifiers are
independent of the chosen approximation procedureA, and
they lower bound the robustnessRF;N and the weightWN ,
respectively.
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In the setting of the above Observation, the approximate
quantifiers correspond to the extensions of the original
quantifiers with respect to the τ closure of the free set; for
the technicalities see the Supplemental Material, Sec. F
[27]. It is natural to consider such extensions, as faithful-
ness is difficult to establish when the free set is not closed.
It follows that the approximate quantifiers are faithful with
respect to the closure. Especially, they are faithful with
respect to F itself, whenever the closure does not introduce
any physical states or channels in addition to the original
ones in F. The counterpart of these, the unphysical
idealizations, are common in quantum field theory. They
are states that do not respect the Born rule and channels that
have no representation in the Schrödinger picture.
Examples of resources under the algebraic constraint.—

As an illustrative example of state resources, we take
bipartite entanglement. Here the free set is the trace-norm
closure of the convex hull of product states. One possible
approximation procedure is given by βnðϱÞ ¼ Pn ⊗
PnϱPn ⊗ Pn þ tr½ϱðPn ⊗ PnÞ⊥�ϱ0. Note that as states
are channels with a trivial input, the approximation pro-
cedure only requires the channels fβng on the output.
Clearly, βnðϱÞ is separable for any separable state. Hence,
this approximation procedure fulfills the conditions of
Observation 1, for example, in the cases of the generalized
robustness and the convex weight.
It is worth noting that in the related work [38] it was

shown that the cone of separable states is closed in a coarser
topology than ours. This implies the closedness in our
topology as well. This means that Theorem 1 is applicable
to entanglement. Importantly, closedness in our topology
shows further that there are no unphysical separable states.
Similarly to entanglement, one can find simple approxi-

mation procedures for the quantum marginal problem and
the broadcasting problem of channels. For the related free
sets, the τ closedness remains an open problem. For details
of these examples, we refer to Supplemental Material,
Sec. G [27].
Conclusions.—We have presented a method for extend-

ing finite-dimensional quantum resource quantifiers into
the infinite-dimensional regime. We have applied our
technique to the well-established quantifiers of generalized
robustness, the free robustness, and the convex weight. In
the case of quantum states (quantum channels) these
quantifiers were formerly known to relate to a performance
boost that quantum resources give in discrimination tasks
(quantum games) in the finite-dimensional setting. We have
identified sufficient topological as well as algebraic con-
ditions, under which such performance interpretation can
be extended to the infinite-dimensional setting. We have
presented various examples of quantum state and channel
resources that fall under these conditions. These include
entanglement, coherence and nonclassicality of quantum
states, as well as broadcasting and a nonentanglement
breaking property of quantum channels.

For future research, it will be interesting to find exact
conditions under which infinite-dimensional resource the-
ories allow faithful quantifiers with the performance
interpretation. Moreover, an open question is to identify
resource theories where the extended quantifiers fail to
coincide with the established ones, i.e., where there is a
finite gap between the two. Furthermore, our work paves
the way to the resource theory of more general dynamical
objects, such as quantum instruments, and more specialized
quantifiers therein, such as tolerance against specific noise
sets in continuous variable systems.
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Note added.—Recently, two articles by Lami, Regula,
Takagi, and Ferrari [38,39] presented related results on
quantum state resources. In their work, they presented a
sufficient condition for the closing of the gap between their
counterpart of our approximate robustness and the original
robustness measure. In our setting that condition is as
follows: We define the topology τ0 on the set of non-
normalized channels, i.e., the space V of completely
bounded linear maps as the coarsest topology with respect
to which the maps V ∋ Λ ↦ tr½ΛðϱÞK� ∈ C are continuous
for all input states ϱ and compact operators on the output
space K. The condition is that the cone corresponding to F
(i.e., the cone whose intersection with the set of channels
coincides with F) is τ0 closed. (Use of cones here is
motivated by noting that F itself is typically not τ0 closed as
the trace-preservation condition for channels is problematic
in this topology.) As τ0 is coarser than our topology τ, this
cone is also τ closed and so is F as the intersection of this
cone with the τ-closed set of completely positive unital
linear maps in the Heisenberg picture (possibly without a
Schrödinger description). Thus this condition implies our
condition in Theorem 1. As an example, the authors proved
that the cone of separable states is closed in the reduction of
τ0 topology to the case of quantum states, i.e., in the σ-weak
topology generated by the compact operators. This shows,
that the set of separable states is τ closed and, consequently,
falls into the realm of our Theorem 1.
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