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We consider the yielding behavior of amorphous solids under cyclic shear deformation and show that it
can be mapped into a random walk in a confining potential with an absorbing boundary. The resulting
dynamics is governed by the first passage time into the absorbing state and suffices to capture the essential
qualitative features recently observed in atomistic simulations of amorphous solids. Our results provide
insight into the mechanism underlying yielding and its robustness. When the possibility of activated escape
from absorbing states is added, it leads to a unique determination of a threshold energy and yield strain,
suggesting thereby an appealing approach to understanding fatigue failure.
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Yielding in amorphous solids is of importance for
understanding their behavior under applied stress in a
variety of materials science and soft matter contexts
[1,2], and has been investigated actively in recent years
through a variety of theoretical approaches and computer
simulations [3–19]. Simulations have been performed most
often employing the athermal quasistatic (AQS) shear [11–
14,20,21], although not exclusively [12,22,23]. Several
studies have focused on yielding behavior of model glasses
under cyclic shear deformation [6,11,12,14,21,24–26], and
indicate that yielding occurs as a sharp, discontinuous
transition. As in the case of uniform shear [13,16,18], the
yielding behavior displays a strong dependence on the
degree of annealing [14,21] and has led to the following
“phase diagram”: With repeated cycles of strain, the
energies, as well as other properties, of glasses change
and reach a steady state. As a function of applied strain
amplitude, the steady state energies of initially poorly
annealed glasses first decrease towards a common thresh-
old energy, and then increases discontinuously upon
yield. The number of cycles to reach steady states increases
as the yielding transition is approached. For higher degrees
of annealing, i.e., lower initial energies, the energies
from cycle to cycle do not change until yielding where an
abrupt transition to the steady-state occurs. This transi-
tion becomes more discontinuous for larger annealing.
The properties of the yielded glasses do not depend on
the initial degree of annealing, and display strain localiza-
tion [12].
Simplified models describing the observed yielding

behavior under cyclic shear, particularly athermal quasi-
static shear, have recently been investigated [27–31]. In
Ref. [29], one of us considered the behavior of a family of
mesostatemodels, meant to describe shear induced changes
of state within a single mesoscale block. Remarkably, key
features of yielding under cyclic AQS shear and its

dependence on the degree of annealing observed in
simulations are reproduced robustly by these models.
Two observations in Ref. [29] motivate the present

study. (i) Starting with a state of some initial energy and
considering the outcome of applying a single cycle of shear
there are two possibilities. If the energy at the end the cycle
is lower than a limit value that is set by the amplitude of
shear, the system is stable with respect to further cycles of
shear. Otherwise, subsequent cycles of shear will induce
further transitions. In the latter case it was observed that the
distribution of energies reached at the end of a cycle does
not depend significantly on their values at the beginning of
the cycle. (ii) Assuming that this distribution is the invariant
distribution emerging under a stochastic dynamics, below
the yielding point, the average time to reach a stable final
state could be accurately predicted by evaluating the time
required to reach an absorbing boundary.
These observations suggest that it is useful to model the

evolution of the state of an amorphous solid, from cycle to
cycle, as a stochastic process that is governed by an
invariant distribution, and in the presence of an absorbing
region whose extent is determined by the applied shear. We
present such a minimal model, which reproduces key
qualitative features of the phase diagram of a sheared
amorphous solid under cyclic shear. As we discuss, the
observed behavior arises as a manifestation of metastability
[32]: The system resides in a steady state determined by the
invariant distribution, with a low but finite transition
probability into an absorbing state which is tuned by the
imposed shear.
The advantage of studying minimal models is twofold:

(i) It permits a rigorous evaluation of emergent properties of
the cyclic shear process and provides insights into the
origin of their robust features. (ii) It also permits the
inclusion of other features of dynamics in a systematic
way. We demonstrate this by considering the role of
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activated processes that may destabilize the absorbing
state, and argue that this offers an appealing approach to
understand fatigue failure, a phenomenon of great practical
importance, wherein a solid may fail after a large but
finite number of cycles of deformation well below the
yielding point. We make these considerations more pre-
cise below.
Mesostate model of a sheared amorphous solid.—To

motivate our approach, we consider the regular model that
was introduced in Ref. [29]. The set of possible states for
the amorphous solid is labeled by ðϵ; nÞ, where ϵ ≥ 0 is an
energy and n ¼ 0;�1;�2;… label distinct states of energy
ϵ. Each pair ðϵ; nÞ describes the net energy of the system
when subjected to a shear strain γ given by

Eϵ;nðγÞ ¼ −ϵþ κ

2
ðγ − γϵ;nÞ2; γ−ϵ;n < γ < γþϵ;n; ð1Þ

where κ is a constant, γϵ;n ¼ 2n
ffiffiffi
ϵ

p
the strain at which the

energy is minimum, and γ�ϵ;n ¼ γϵ;n �
ffiffiffi
ϵ

p
mark the range in

strain over which the system in state ðϵ; nÞ responds purely
elastically. In Ref. [33] we have called the elastic branches
ðϵ; nÞ mesostates, and we therefore refer to this model as a
mesostate model. Under athermal oscillatory strain, the
energy of the system in mesostate ðϵ; nÞwill vary according
to Eq. (1), as long as the applied shear remains within the
stability interval ðγ−ϵ;n; γþϵ;nÞ. When the boundary γ�ϵ;n is
reached, a (plastic) transition to a new mesostate ðϵ0; n0Þ has
to occur. For athermal dynamics, energy is only dissipated
and thus Eϵ0;n0 ðγÞ < Eϵ;nðγÞ. However, this condition does
not exclude transitions where ϵ0 < ϵ, i.e., to higher energies
of well minima in Eq. (1), and in fact such transitions are
essential for nontrivial dynamics [29]. Considering the
mesostates attained at the end of each cycle, the dynamics
is effectively one dimensional (since states stable at zero
strain have n ¼ 0), and continues until a mesostate
ðϵf; nf ¼ 0Þ is reached such that γ2 < ϵf, and the system
will respond purely elastically to subsequent cycles of shear
and no further transitions occur. We shall call this the
absorption condition. The particular sequence of transi-
tions depends on the details of the dynamics of the
mesostate model. As motivated earlier, however, we
assume that it is governed by a stationary stochastic
process, along the energy axis ϵ. We introduce next an
idealized model whose stochastic dynamics describes a
random walk along the energy axis that is trapped in a
confining region whose boundary marks the absorbing
regime.
The Ehrenfest model.—We consider a reversible nearest-

neighbor Markov chain, having a finite state space
E of 2N þ 1 mesostates, with energies ϵk ¼ ðk=2N Þ,
k ¼ 0; 1; 2;…2N . The one-step transition probabilities
of the Markov chain are assumed to be independent of
γ, PðXtþ1 ¼ ϵjjXt ¼ ϵkÞ ¼ pðϵk; ϵjÞ≡ pk;j with

pk;j ¼
�
1 −

k
2N

�
δkþ1;j þ

k
2N

δk−1;j: ð2Þ

Taking k to represent the number of balls (out of 2N ) in one
of two urns, the Markov chain generated by Eq. (2) is a
description of the Ehrenfest urn model [34,35]: at each time
step we pick one of the 2N balls uniformly and at random
and transfer it to the other urn. The Markov chain has
invariant measure μðϵkÞ, given by the binomial distribution

μk ¼ μðϵkÞ ¼
�
2N

k

�
1

22N
; ð3Þ

as is readily checked. μk is unimodal with mean ϵss ¼ 1=2,
the steady-state energy (see below), and typical fluctuations
around ϵss being of order 1=

ffiffiffiffiffi
N

p
. Given γ, the absorption

condition is obeyed by the set of states Aγ ¼ fϵj∶γ2 < ϵjg.
For the nearest-neighbor random walk initialized outside
Aγ , the absorbing condition is satisfied when the mesostate
in Aγ with smallest energy is reached. We denote this
mesostate as ϵγ ¼ kγ=ð2N Þ ≈ γ2, for N large.
Assuming that the initial state ϵ is not in the absorbing

region, the qualitative features of the dynamics depends on
whether ϵγ is less or larger than the steady-state energy ϵss.
When ϵγ < ϵss, the evolution is “down hill,” and therefore
fast, moving the mesostate energy ϵ towards larger values.
Conversely, when ϵγ > ϵss, reaching the absorbing region
requires moving “up hill,” since the dynamics on average
tends to move the state away from the absorbing region and
towards the steady state ϵss. Consequently, the up hill
relaxation times into the absorbing region are larger, and
display characteristics of metastability [32], namely, a fast
evolution towards the region around ϵss, followed by a
slower, up hill relaxation to the absorbing region. These
features are illustrated in Fig. 1(a).
We turn next to the mean first-passage time τabsðγÞ to

reach ϵγ from the steady state ϵss in the up hill regime, when
ϵγ > ϵss. For the nearest-neighbor Markov chain it is given
in general by [32,36–38]

τabsðγÞ ¼
Xkγ−1

j¼1þN =2

μj
cðj; kγÞ

þ 1

cðN =2; kγÞ
XN =2

j¼0

μj; ð4Þ

where μj ¼ μðϵjÞ is the invariant measure, and

1

cðm; nÞ ¼
Xn−1
j¼m

1

μjpj;jþ1

: ð5Þ

A self-contained derivation of this result is given in the
Supplemental Material [39], which may also be consulted
for additional details of the discussion below. For our
present purposes, it suffices to illustrate how metastability
emerges from Eq. (4). When the invariant measure μj is
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unimodal and peaked around ϵss, the expressions 1=cðm; nÞ
in Eq. (4), due to their reciprocal dependence on μj in
Eq. (5), are dominated by the terms furthest away from ϵss.
This means that (i) in the regime ϵγ > ϵss, the mean first-
passage time τabsðγÞ grows rapidly with γ, and more
importantly (ii) that to leading order this growth depends
only on the tails of μ. Thus to a good approximation the first
passage time itself is exponentially distributed with mean
τabsðγÞ [32].
For the Ehrenfest model the mean hitting time τabsðγÞ can

be calculated directly from Eq. (4) and is given for ϵγ > ϵss
and N large by [35]

τabsðγÞ ¼ 2
ffiffiffiffiffiffiffiffi
πN

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵγð1 − ϵγÞ

q e2N IðϵγÞ

2ϵγ − 1
; ð6Þ

where IðxÞ ¼ ln 2þ x ln xþ ð1 − xÞ lnð1 − xÞ.
We turn next to the phase diagram of the Ehrenfest

model. Given a fixed number τ of driving periods, a strain
amplitude γ and an initial state ϵ0, we consider whether the
absorbing region Aγ is reached within τ steps or not.
The phase diagram can then be expressed in terms of the

ensemble average of final energies ϵf reached, given ðϵ0; γÞ,
which becomes

ϵf ¼

8>><
>>:

ϵ0; ϵγ ≤ ϵ0;

ϵγ; ϵ0 < ϵγ ≤ ϵss;

ϵγ − ðϵγ − ϵssÞe−τ=τabsðγÞ; ϵγ > max ðϵ0; ϵssÞ;
ð7Þ

The first line in Eq. (7) describes the case when the initial
state is already in the absorbing region, while the second
line corresponds to the case when the (fast) down hill
evolution towards steady state pushes the system into the
absorbing region. The third line describes the regime of
metastability, where the system almost certainly is in the
steady state with ϵ ≈ ϵss and the probability to reach the
absorbing region within the duration τ of the driving is
given as exp½−τ=τabsðγÞ�.
Combining Eq. (6) with Eq. (7), we obtain an analytical

expression describing the phase diagram ϵfðϵ0; γÞ. Figure 2

FIG. 2. The phase diagram of the Ehrenfest model with
N ¼ 50 and τ ¼ 1000. Each curve corresponds to a sequence
of final states ϵf, averaged over 1000 realizations, as the driving
amplitude γ is varied, for a range of initial energy values ϵ0, each
shown with symbols of a different colour. The solid lines of the
same color are the theoretical predictions Eq. (7). The center of
the steady-state region (E ¼ −ϵf) is indicated by the dashed
horizontal line E ¼ −1=2, while the blue dashed parabola E ¼
−γ2 marks the boundary of the absorbing region, with no
dynamics. The inset shows (black lines) ϵf , as obtained from
Eq. (7) with N ¼ 50 and driving periods τ ¼ 103; 104;…; 1010

(from left to right). The theoretical prediction for the minimum is
indicated by the circles. The thick red line is the corresponding
curve given by Eq. (11) with finite escape rate τesc ¼ 108 and
τ ¼ 1010, which determines a unique yielding point (red box), as
explained in the text.

(a)

(b) (c)

(d)

FIG. 1. (a) The dynamics of the mesostate model under cyclic
shear at strain amplitude γ can be viewed as the motion of the
state point or a particle (gray circle) diffusing along the energy
axis ϵ. The particle is confined by an effective potential (blue)
with minimum at ϵss and a γ-dependent absorbing region ϵ ≥ ϵγ
(red region). The dynamics depends on whether (from left to
right) ϵγ < ϵss, ϵγ ≈ ϵss, or ϵγ > ϵss, the case of metastability
where the particle is trapped near ϵss and the transition into the
absorbing region is a rare event. Dividing the states in to steady-
state (S) and absorbing (A) regions, panel (b) illustrates the
athermal cases with transitions from S to A with rate 1=τabsðγÞ,
panel (c) illustrates the inclusion of activated escape events with
rate 1=τesc, and panel (d) illustrates in addition transitions among
states within A (see text).
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shows the phase diagram ϵfðϵ0; γÞ obtained from a simu-
lation of the Ehrenfest model with N ¼ 50 and τ ¼ 1000
along with the theoretical prediction (solid lines). Our
prediction reproduces the qualitative features of the phase
diagram obtained from AQS simulations of a cyclically
sheared amorphous solid rather well, as can be seen by
comparing Fig. 2 with the corresponding figures 1A and 2A
of Ref. [14], 2a of Ref. [40], and 4 of Ref. [30]. These
features include the nonmonotonic behavior of ϵfðϵ0; γÞ for
the samples at low energies, as well as the absence of
annealing up to yielding in the well-annealed samples. The
local minimum at ðγy; ϵγyÞ is interpreted as the onset of the
yielding transition [29]. While our results capture some
aspects of the behavior above yielding, we believe that
incorporation of interactions among mesoscale blocks—
not included here—is necessary to realistically describe
macroscopic behavior in this regime. Note that for ϵ0 > ϵγy
and γ ≥ γy, the numerical data points deviate from the
theoretical prediction. The reason for this is that in the third
line of Eq. (7), we have assumed that the system always
returns to the steady-state region before attempting to reach
the absorbing region. Consequently, we have ignored the
case when states sufficiently close to the absorbing region
have an appreciable chance to reach it before relaxing to the
steady state energy ϵss.
The inset of Fig. 2 shows ϵf as a function of γ for

τ ¼ 103; 104;…1010 (from left to right and increasingly
darker gray shade). We note that the point of upturn of ϵf,
which we identified as the yield point, shifts to higher γ
values with increasing τ but exceedingly slowly. Indeed,
from Eq. (7) it is clear that at the yielding point τ ∼ τabsðγyÞ.
Using Eq. (7), and employing the quadratic approximation
of IðxÞ in Eq. (6), we obtain to leading order,

γ2y ¼
1

2

2
641þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
ln

�
π−

1
2
τ

N

�s 3
75: ð8Þ

The theoretical prediction of the yielding point is shown in
the inset of Fig. 2 (filled circles). The dynamics of the
mesostate models can be cast in the form of a Fokker-
Planck equation in the continuum limit, as described in the
Supplemental Material [39].
Finally, let us note that the Ehrenfest model exhibits

memory formation and marginal stability [41,42]: The
search for an absorbing state terminates with the first
mesostate whose energy satisfies ϵ > γ2. Since the step
size of the random walk is small, this actually happens
when ϵ ≈ γ2, so that the mesostate is barely absorbing and
thus the driving amplitude marks the boundary between
absorption and diffusion, forming a memory of the strain
amplitude that can be read out.
Activated processes.—In the discussion so far, we have

treated states in the absorbing region ϵ > ϵγ as being stable

with respect to cycles of shear, and thus, once such a state is
reached, the system remains in that state. This situation
changes qualitatively if we consider the possibility of
activated escape from such stable states. We first consider
the case of a fixed activation time τesc. Denoting by PAðtÞ
and PSðtÞ the probabilities that the system is in an
absorbing state A, respectively, steady-state S, the evolution
of this pair of probabilities follows a two-state continuous-
time Markov process,

_PS ¼ −
1

τabsðγÞ
PS þ

1

τesc
PA; ð9Þ

_PA ¼ −
1

τesc
PA þ 1

τabsðγÞ
PS; ð10Þ

with transition rates τ−1esc and τ−1absðγÞ, where τabsðγÞ is
given by Eq. (6). Solving these with the initial condition
PSð0Þ ¼ 1 and PAð0Þ ¼ 0, the last line of Eq. (7) for
ϵfðϵ0; γÞ can now be written as

ϵf ¼ μSϵss þ μA½ϵγ − ðϵγ − ϵssÞe−τ=τeff �; ð11Þ

where τ−1eff ¼ τ−1esc þ τabsðγÞ−1 and μS ¼ fτabsðγÞ=½τescþ
τabsðγÞ�g, μA ¼ fτesc=½τesc þ τabsðγÞ�g are the t → ∞ values
of PSðtÞ and PAðtÞ, respectively. The inset of Fig. 2 shows
the behavior of ϵf for τesc ¼ 108 (red curve). The corre-
sponding yield strain (red box), which becomes fixed by
τesc, turns out to be given simply by Eq. (8), but with τesc in
place of τ (see Supplemental Material [39]). Equation (8)
suggests that, generically, yielding will be accompanied by
a discontinuous change in energy, since the location of
yield is determined by τ or τesc.
Rather than assume τesc arbitrarily, it can be computed by

the dynamics of the model under the assumption that an
absorbing state ϵj will become unstable on a time scale
given by

τj ¼ τ0eβΔEj : ð12Þ

Here ΔEj ¼ ðκ=2Þðϵj − γ2Þ is the difference between the
energy E ¼ −ϵj þ ðκ=2Þϵj of state j at its stability limit
γ� ¼ � ffiffiffiffi

ϵj
p and the energy at strain γ, E ¼ −ϵj þ ðκ=2Þγ2.

ΔEj is thus the energy barrier that must be overcome by
activated processes for the state ϵj to become unstable and β
is the inverse temperature that determines activation rates.
While we write the activation time in a form that corre-
sponds to thermal activation, we do not make any specific
assumptions in this work about the origin of the activation.
Indeed, the idea of activation as arising from mechanical
noise has been extensively studied, as also thermal noise
[43–46].
Considering the steady state S with measure μS, and

setting ϵk ¼ γ2, so that the absorbing region is formed by
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the states with j ≥ k, the detailed balance conditions, as
illustrated in Fig. 1(d), become

pk;k−1

τ0
μk −

μS
τabsðγÞ

¼ 0; ð13Þ

pjþ1;j

τjþ1

μjþ1 −
pj;jþ1

τj
μj ¼ 0; j ≥ k; ð14Þ

where the first line expresses μS in terms of μk, and for
j > k, μj are given in terms of μk by

μj ¼ μkη
j−k

�
2N

j

��
2N

k

�−1
; ð15Þ

where η ¼ eðβκ=4N Þ, and μk is determined by normalization.
Expressed in energies, μj nominally has a maximum at
ϵmax ¼ ðβκ=16N Þ þ ϵss. In the case ϵmax < ϵγ , which we
do not consider further, τesc is determined by the timescale
τ0. Instead, we assume ϵγ < ϵmax < 1. Under this
assumption, the probability μA ¼ P

j≥k μj that the system
is in one of the absorbing states can be evaluated as

μA ¼ μk
ffiffiffiffiffiffiffiffi
πN

p
e4N ðϵmax−ϵγÞ2 : ð16Þ

Coarse graining the Markov process by considering only
transitions between A and S, the dynamics reduces to
Eqs. (9) and (10) with the γ-dependent escape rate given by

τesc ¼ τ0
ffiffiffiffiffiffiffiffi
πN

p
e4N ðϵmax−ϵγÞ2 ; ð17Þ

and providing thereby an explicit expression for τesc used in
Eq. (11). Note that τesc is a decreasing function of γ whereas
τabsðγÞ is an increasing function, and thus, their crossing
uniquely determines the yielding point.
We finally note that a finite and strain-dependent τesc

provides a mechanism by which the system may yield also
well below the yielding point. This suggests the possibility
that the present analysis could be extended to investigate
fatigue failure, a phenomenon wherein a material may fail
when subjected to repeated, cyclic loading, below the yield
point. The number of cycles to such failure is known to
increase exponentially with the distance away from the
yielding point, a possibility supported by the results here.
Extending the present analysis in that direction is the
subject of future work.
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