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Glasses possess more low-frequency vibrational modes than predicted by Debye theory. These excess
modes are crucial for the understanding of the low temperature thermal and mechanical properties of
glasses, which differ from those of crystalline solids. Recent simulational studies suggest that the density of
the excess modes scales with their frequency ω as ω4 in two and higher dimensions. Here, we present
extensive numerical studies of two-dimensional model glass formers over a large range of glass stabilities.
We find that the density of the excess modes followsDexcðωÞ ∼ ω2 up to around the boson peak, regardless
of the glass stability. The stability dependence of the overall scale of DexcðωÞ correlates with the stability
dependence of low-frequency sound attenuation. However, we also find that, in small systems, where the
first sound mode is pushed to higher frequencies, at frequencies below the first sound mode, there are
excess modes with a system size independent density of states that scales as ω3.
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Low-temperature glasses exhibit thermal and mechanical
properties [1–7] that distinguish them from crystalline
solids. The low-frequency vibrational modes in crystalline
solids are plane waves. Their density of states is well
described by Debye theory and scales with frequency ω as
ωd−1 where d is the spatial dimension. For glasses, there are
additional low-frequency modes that result in a peak
in the reduced total density of states DðωÞ=ωd−1, which
is referred to as the boson peak (BP) [8–11]. Understanding
the nature of the additional modes provides insight into
the physics behind the anomalous properties of glasses
[12–20].
Mean field theory [21,22] predicts that the density of the

low-frequency excess modes DexcðωÞ grows as ωβ with
β ¼ 2, while several phenomenological models [23–27]
predict β ¼ 3 or 4. Fluctuating elasticity theory [28]
predicts that β ¼ dþ 1. An analysis based on a fold
stability predicts β ¼ 3 in glasses approaching marginal
stability [29], while other recent theories predict β ¼ 4
[30–33].
Characteristics of individual modes can be examined in

computer simulations, but studying finite systems presents
some difficulties. One is that the plane-wave-like modes
occur around discrete frequencies, which can be approxi-
mated using Debye theory. For this reason, care is needed
when calculating the density of states. Simulating two-
dimensional glasses adds another difficulty since Mermin-
Wagner [34–37] fluctuations lead to pronounced finite size
effects in some static and dynamic properties of 2D solids.
With increasing system size the glass behaves increas-

ingly as a continuous elastic solid, and it is expected that
there are plane-wave-like modes similar to those of Debye

theory, which leads researchers to distinguish between
plane-wave-like modes and additional modes. One simple
way to do this is to use the participation ratio, which is a
measure of how many particles significantly participate in
the mode [38,39]. Another approach is to introduce an
order parameter that quantifies the similarity between a
low-frequency mode in an amorphous solid and a plane
wave [39]. Although these methods are naturally suited for
large systems, in principle, they can be used for systems of
any size. An alternative approach is to study small systems
in which the first plane-wave-like mode is pushed to higher
frequencies [40]. The low-frequency modes found in these
small systems are postulated to be the modes in excess of
the Debye prediction.
Mizuno et al. [39] used the participation ratio and an

order parameter to separate modes into extended and excess
modes in over one-million particle, two- (2D) and three-
dimensional (3D) systems. In both dimensions, they found
that the density of the modes with large participation ratio
obeyed Debye scaling. In 3D, they found that the density of
the excess modes, which they determined are quasiloca-
lized, scales as DlocðωÞ ∼ ω4.
The scaling of the density of excess modes Mizuno et al.

found in 3D agrees with the scaling observed previously by
studying small systems [40]. Subsequent work by Wang
et al. [41] confirmed the picture observed by Mizuno et al.
in 3D in glasses of a wide range of stability. Numerical
simulations have demonstrated the universality of DðωÞ ∼
ω4 scaling in 3D model glass formers, irrespective of glass
preparation or interaction potentials [39–54]. In their
studies of large 2D systems, Mizuno et al. found very
few low-frequency modes with small participation ratio or
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with small values of plane-wave order parameter. However,
Kapteijns, Bouchbinder, and Lerner [55], who studied
small systems, found modes below the first plane-wave-
like mode with density scaling as ω4. The ω4 scaling was
inferred from the distribution of the minimum vibrational
frequencies in Ref. [56] by studying small 2D systems.
Notably, unlike in higher dimensions, Kapteijns et al.
found that the prefactor for the ω4 scaling grew with
system size as ½logN�5=2 in 2D. For the much larger system
studied by Mizuno et al., it might be expected that there
would be a discernible increase in the density of states over
the Debye spectrum, but the logarithmic increase with
system size would make the increase modest.
In this Letter, we present results for the density of excess

modes, DexcðωÞ, in 2D model glass formers with different
interaction potentials and stability. We used two ways to
calculate DexcðωÞ. The first method is to subtract off the
Debye prediction. Except for very low frequencies, this
should allow one to examine how DexcðωÞ changes with
frequency, but the discrete nature of the spectrum makes it
hard to determine the low-frequency growth of DexcðωÞ.
Using this procedure, we found that DexcðωÞ ∼ ω2 in 2D.
Importantly, DexcðωÞ is correlated with the low-frequency
scaling of sound attenuation, which resembles the corre-
lation found in 3D [19]. In the second method, we studied
small systems to make a more direct connection with
previous results. Unlike previous work, we found a system
size and model independent ω3 scaling of the density of
states far below the first mode predicted by Debye theory.
However, these low-frequency modes are very rare in
poorly annealed systems, and we did not find them in
stable systems.
We performed extensive simulation studies of four 2D

model glass formers: (I) a polydisperse system with an
inverse power law potential ∝ r−n (r is the interparticle
distance) with n ¼ 12 (IPL-12) [57]; (II) a bidisperse
system with an inverse power law potential where n ¼
10 (IPL-10) [44]; (III) a bidisperse system with a Lennard-
Jones potential [58]; (IV) a bidisperse system with a
harmonic potential [59]. Details regarding the four models
can be found in the Supplemental Material [60].
We created zero-temperature glasses by instantaneously

quenching equilibrated liquid configurations at parent
temperatures Tp to T ¼ 0 using the fast inertial relaxation
engine [61]. Equilibrated liquids at high parent temper-
atures were obtained by performing molecular dynamic
simulations using LAMMPS [62]. Glasses obtained using
this method are not very stable. To generate stable glasses
for the IPL-12 system, we employed the swap Monte Carlo
method [63–65] to prepare equilibrated supercooled liquids
at low Tp, down to 37%Tg, where Tg ≈ 0.082 is the
estimated experimental glass transition temperature [57].
The normal modes of T ¼ 0 glasses were obtained by

diagonalizing the Hessian matrix using ARPACK [66] and
the Intel Math Kernel Library [67]. The density of states is

given by DðωÞ ¼ ½1=ð2N − dÞ�P2N−d
l¼1 δðω − ωlÞ with ωl

the frequency of mode l and N the number of particles. In
glasses, there are no pure plane-wave modes and the
frequencies of the plane-wave-like modes are clustered
around the Debye predictions [68,69]. Since Debye theory
predicts discrete modes in finite systems, if the bin size to
be used in the calculation of DðωÞ is not chosen correctly,
the density is inaccurate. The calculation of the cumulative
density of states IðωÞ ¼ R

ω
0 Dðω0Þdω0 does not suffer from

this issue since it amounts to counting the number of states
up to ω and dividing by the total number of states. For this
reason, we focus on IðωÞ.
To obtain the excess modes, Mizuno and coworkers [39]

defined a threshold of the participation ratio Pc ¼ 0.01 to
divide plane-wave-like modes and quasilocalized modes.
They concluded that there are few to no low-frequency
quasilocalized modes in poorly annealed 2D glasses [39].
Additionally, the Debye theory accurately predicted the
low-frequency density of states, but there was still a boson
peak at higher frequencies. We attempted to use the
participation ratio to separate the modes, but we found
that the scaling behavior of the excess modes in 2D stable
IPL-12 model glasses depends strongly on Pc, which
makes it impossible to determine the scaling of IðωÞ using
the participation ratio. Therefore, we utilized a different
procedure by subtracting from IðωÞ the Debye predi-
ction [28]

IexcðωÞ ¼ IðωÞ − IDðωÞ; ð1Þ

where IDðωÞ is the Debye prediction [70], IDðωÞ ¼
ADω

d=d with Debye level AD determined from mechanical
moduli [70]. This procedure does not take into account that
the mode frequencies are discrete for finite systems.
Figure 1(a) shows IexcðωÞ for our 2D IPL-12 model

glasses for N ¼ 20 000 at different parent temperatu-
res Tp. The glass’s stability increases with decreasing
Tp [41,47,57]. We use parent temperatures ranging from
Tp ¼ 0.400, which is above the onset temperature of slow
dynamics To ¼ 0.250, down to Tp ¼ 0.030, which is
below Tg ¼ 0.082 [57]. For the lowest frequencies where
we can clearly estimate a power law, we find that
IexcðωÞ ≃ A2ω

3=3, which suggests that DexcðωÞ ≃ A2ω
2.

We find that this scaling continues to about the Ioffe-Regel
limit or the boson peak frequency [10], irrespective of the
glass’s stability. We find that the coefficient quantifying the
magnitude of the excess modes density, A2, is stability
dependent, Fig. 1(b). A2 decreases by a factor of 13 for our
lowest Tp. This indicates that there are fewer excess modes
for increasingly stable 2D glasses, which is consistent with
observations for 3D glasses [41,47,54].
Previous work [18,19,28] found a connection between

sound attenuation and density of excess low-frequency
modes. In particular, in Ref. [19], we showed that the
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prefactor B4 in the sound attenuation coefficient ΓðωÞ ¼
B4ω

4 scales linearly with the prefactor A4 in the scaling
IexcðωÞ ¼ A4ω

5=5 in 3D glasses. Inspired by this result, we
examined whether A2 is related to the prefactor B3 in the
sound attenuation coefficient ΓðωÞ ¼ B3ω

3 in 2D.
Previously, B3 was found to decrease with increasing glass
stability [18]. Here, we find A2 ∼ Bγ

3 with γ ≈ 2=3, and
thus, we establish that, in 2D, the density of the excess
modes is related to sound attenuation, which is consistent
with our result for 3D glasses [19]. Further work is needed
to elucidate the nonlinear relationship between A2 and B3 in
2D, which contrasts with A4 ∝ B4 in 3D.
Since the method introduced here is different from

methods used before, we checked what results it produces
for 3D glasses where it has been firmly established that
IexcðωÞ ∼ ω5. In Fig. 2, we show IexcðωÞ in 3D IPL-12
glasses for two stabilities, a poorly annealed glass with
Tp ¼ 0.200 and a stable glass with Tp ¼ 0.062 (the same
glasses were examined in Ref. [41]). We find that IexcðωÞ ∼
ω5 up to a frequency close to the boson peak for both

glasses, which indicates the resulting scaling of IexcðωÞ
determined using Eq. (1) is consistent with that of IexcðωÞ
calculated with previously used procedures [39,41,43].
Additionally, these results suggest that, in 3D, the end of
the ω5 scaling of IexcðωÞ is around the boson peak
frequency. We note that our procedure cannot be used
for frequencies below the lowest plane wave mode fre-
quency. More importantly, it will only reveal the proper
scaling if there is a near continuum of modes [68].
It has been claimed [40,48,55] that the scaling of the

excess modes could be obtained from the low-frequency
density of states for small systems since the frequency of
the lowest plane-wave-like mode is pushed up. One may
expect the total cumulative density of states IðωÞ ¼ IexcðωÞ
for low frequencies if the excess modes were independent
of the plane-wave-like modes, which we found for 3D
glasses with different stabilities, see Fig. 2. The low-
frequency tail of IðωÞ is well described by a power law
IexcðωÞ ∼ ω5 for Tp ¼ 0.200 and Tp ¼ 0.062. However, in
2D glasses much below the first Debye frequency, we find
IðωÞ ∼ ω4, which suggests that DðωÞ ∼ ω3. Previous stud-
ies reported DðωÞ ∼ ω4 in 2D [55,56], which would imply
that IðωÞ ∼ ω5. To make sure this observation is model
independent, we repeated this procedure for different model
glass formers.
In Fig. 3, we show IðωÞ for N ¼ 3000 system in the 2D

IPL-12 model. There is a range of frequencies below the
lowest Debye mode frequency (≈0.261) where IðωÞ ∼ ω4.
To check this scaling, we examined IðωÞ=ω4, see the inset
to Fig. 3, and we found that there is a low-frequency
plateau. Previous results suggest that IðωÞ ∼ ω5 at frequen-
cies much below the first Debye mode in 2D glasses
[55,56]. However, we find that the ω5 scaling is only valid
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for an intermediate-frequency regime below the peak of
IðωÞ and appears to be a transient between the low-
frequency scaling and the change of the scaling due to
the emergence of plane-wave-like modes.
Moreover, we found that this low-frequency IðωÞ ∼ ω4

scaling in 2D does not depend on the model glass former,
see Fig. 1 of the Supplemental Material [60]. There are
common features shared by each model. First, the prefactor
of the scaling law does not depend on system size. This
conclusion is different than the conclusion of Ref. [55] that
IðωÞ ¼ A4ω

5=5 and the prefactor A4 grows as ðlogNÞ5=2.
Second, the quartic law works up to a larger frequency with
decreasing system size.
There are very few modes that contribute to the low-

frequency ω4 scaling of IðωÞ for our least stable 2D glass.
On average, there is only one mode in the low-frequency
IðωÞ ∼ ω4 regime every one hundred configurations for the
N ¼ 3000 system. The lower the frequency we want to
examine, the larger the ensemble size NEn (number of
configurations) we need. However, we do not observe NEn

dependence of the IðωÞ ∼ ω4 regime in N ¼ 3000 system
when NEn ranges from around 100 000 to 710 000, see
Fig. 3. The same conclusion can also be drawn in our study
of the N ¼ 1000 system where NEn is around 2 200 000
[60]. We checked that the previously reported ω5 scaling in
some systems is due to ensemble size not being large
enough, which hinders the observation of the ω4 scaling at
much lower frequencies. We also find that the ω5 scaling
regime vanishes for very small systems [60]. Since the
number of these low-frequency modes decreases with
increasing stability, we could not examine the stability
dependence of these modes. We do not exclude the
possibility that annealing can change the scaling of
IðωÞ [45,53].

In conclusion, we utilized two methods to examine the
excess density of states in 2D glasses. In large systems, we
found evidence that the excess density of states scales as
A2ω

2, and A2 correlates with the sound attenuation coef-
ficient. However, in small systems, we found that the
modes below the lowest Debye frequency have density of
states scaling as ω3, with a system-size independent
prefactor. This inconsistent behavior is not found in 3D
glasses.
Our results leave several open questions. First, why is the

scaling of excess modes different above and below the
lowest Debye frequency? One possibility is that our
systems are not large enough to accurately determine
IexcðωÞ by subtracting off the Debye contribution at low
frequencies. However, we do find a frequency range where
the excess density of states calculated by subtracting off the
Debye contribution exhibits systematic deviation from the
density of excess states in small systems, see Fig. 4 of
the Supplemental Material [60]. Thus, it seems that the
presence of plane waves influences the behaviors of the
excess density of states in 2D glasses.
Second, is it possible that the ω2 and ω3 scalings do not

extend to ω ¼ 0? A gap in the excess density of states
would be consistent with the conclusions of Ref. [39]. It is
very difficult to numerically test this since the ω2 and ω3

scalings represent very few modes. Future theoretical work
may shed some light on this issue.
Third, why is the excess density of states of 2D glasses

different from that of 3D glasses? Fluctuating elasticity
theory predicts that DexcðωÞ depends on spatial dimension
as ωdþ1 [28]. Thus, the predicted DexcðωÞ ∼ ω4 in 3D
glasses is consistent with 3D numerical observations. The
predicted scaling of DexcðωÞ ∼ ω3 of 2D glasses is con-
sistent with what we find in small systems.
Finally, is it possible that the upper frequency cutoff of

the low-frequency scaling,ωg, is below the frequency range
where we found ω2 scaling of DexcðωÞ in large 2D glasses?
If this were the case, it would differ from our finding in 3D
that ωg is around the boson peak frequency. Future work
should examine what determines ωg and its d dependence.
The dimensional dependence of properties of glasses has

implications of the nature of the glass transition and the
theoretical understanding of the properties of glasses. This
work is another demonstration that some characteristics of
2D and 3D glasses profoundly differ, and thus, any
extrapolation of the properties of two-dimensional glasses
to higher dimensions should be done with care.
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