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We introduce and analyze a model that sheds light on the interplay between correlated insulating states,
superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a
variational mean-field theory, we determine the normal-state phase diagram of our model as a function of
the band filling. The model features robust insulators at even integer fillings, occasional weaker insulators
at odd integer fillings, and a pattern of flavor-symmetry breaking at noninteger fillings. Adding a phonon-
mediated intervalley retarded attractive interaction, we obtain strong-coupling superconducting domes,
whose structure is in qualitative agreement with experiments. Our model elucidates how the intricate form
of the interactions and the particle-hole asymmetry of the electronic structure determine the phase diagram.
It also explains how subtle differences between devices may lead to the different behaviors observed
experimentally. A similar model can be applied with minor modifications to other moiré systems, such as
twisted trilayer graphene.
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Introduction.—When two graphene layers are stacked
at a relative twist angle of ∼1.1°, the lowest-lying
electron bands become exceptionally flat [1]. Recently, this
so-called magic angle twisted bilayer graphene (MATBG)
emerged as a highly tunable platform to study strongly
correlated physics. Correlated insulators (CIs), where
interactions induce a gap and suppress transport, were first
observed in MATBG at fillings of ν ¼ �2 electrons
per moiré unit cell relative to the charge neutrality point
(CNP) [2,3]. Later experiments found a CI at ν ¼ þ3 [4,5],
and in some instances CIs were measured at nearly all
integer fillings [6]. Empirically, insulating behavior is more
pronounced for electrons (ν > 0). The origin of these
integer-filling CIs has been explored in several recent
works [7–15].
Another remarkable feature of MATBG is the

appearance of superconducting domes near the CIs at
ν ¼ �2 [3–5], with superconductivity generally being
more robust for holes (ν < 0), and (for both electrons
and holes) on the jνj > 2 side. Experiments manipulating
the electrostatic screening have indicated that Coulomb
repulsion is either detrimental to superconductivity in
MATBG or weakly affects it [4,5,16,17]. This suggests
that electron-phonon coupling may play a role in MATBG
[18–22], and plausibly induce superconductivity at certain
fillings. However, the interplay between strong repulsion
and its effect on the normal-state, retarded attraction due to
phonons, and the unique multiband structure have yet to be
fully explored.
In this Letter, we introduce and investigate a pheno-

menological model and find that it exhibits the most salient
features of MATBG observed in experiments. The model
comprises four electronic “flavors,” accounting for spin and

valley degeneracies, and interactions with strengths of the
order of their bandwidth. The structure of the interaction
terms and the features of the density of states (DOS) of
noninteracting MATBG determine the phase diagram.
We find electron correlations induce CIs at even-integer

fillings with intervalley coherent (IVC) order [i.e., sponta-
neously breaking valley Uvð1Þ symmetry], whereas the odd-
integer CIs, typically having bands with nonzero Chern
numbers, are more sensitive to details of subleading inter-
action terms. At noninteger fillings, the system is not fully
gapped, yet, the spin-valley flavor symmetry is broken
[23–25]. Retarded intervalley attractive interactions, due
to, e.g., phonons [19], then enable the formation of super-
conducting domes, which are most prominent at fillings
which agree remarkably well with experiments. As depicted
in Fig. 1, we recover a superconducting dome flanked by two
insulators near ν ¼ þ2;þ3, and a more substantial dome on
the hole-doped side of the ν ¼ −2 CI.
At certain fillings, strong-coupling superconductivity

may be established, i.e., Tc becomes an appreciable
fraction of the Fermi temperature TF, leading to significant
superconducting phase fluctuations, whose effect on trans-
port we account for. This is enabled by the underlying
normal state, where interactions induce spontaneous break-
ing of flavor-symmetry breaking and the valley Uvð1Þ
symmetries. Moreover, this symmetry-broken state has
only two active flavors in different valleys and opposite
spins, hence it may sustain large in-plane magnetic fields.
Model and results.—Our model comprises eight flat

bands with valley (K=K0), spin, and sublattice (A=B) degrees
of freedom, labeled by Pauli matrices τi, si, and σi,
respectively. This basis is motivated by the MATBG
sublattice-polarized basis discussed in Ref. [11]. These
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bands have a valley-dependent Chern number, C ¼ τzσz.
The model Hamiltonian is

H ¼
X

k

Ψ†
kh0ðkÞΨk þHint; ð1Þ

where Hint describes the interactions, Ψk is an 8-spinor
of fermionic operators cτsσðkÞ (annihilating an electron at
valley τ, spin s and sublattice σ), and

h0ðkÞ ¼ fxðkÞσx þ fyðkÞσyτz þ fp−hðkÞ: ð2Þ

The functions fx, fy, and fp−h determine the dispersion in
the moiré Brillouin zone (mBZ), which has two Dirac cones
with the same chirality, and reproduces an electronic DOS
with the prominent features of the MATBG flat-bands (see
Fig. 1 inset). Namely, linearly increasing DOS near the CNP,
pronounced DOS peak near half-filling of the conduction or
valence bands followed by a decline towards the band edge,
and appreciable particle-hole asymmetry. The combined
bandwidth of the conduction and valence bands in the
mBZ is W. We note the form of h0ðkÞ preserves C2 ¼
τxσx and time-reversal symmetries T ¼ τxK, with K the
complex-conjugation operator [34]. For more about h0ðkÞ,
see Supplemental Material, Sec. S1 [26].
We write electron-electron interactions as a sum of local

interaction terms,

Hint ¼
X

α;k;k0;q

λα
2Ω

ðΨ†
kþqO⃗αΨkÞ · ðΨ†

k0−qO⃗αΨk0 Þ; ð3Þ

where Ω is the volume, O⃗α are matrices in valley-
spin-sublattice space, and λα are coupling constants. The
dominant term is the density-density interaction with

O⃗1 ¼ 1, λ1 ¼ UC, and reflects the screened Coulomb

repulsion. We consider a secondary interaction O⃗2 ¼
ðτzσx; σyÞ with λ2 ¼ Uδ, accounting for the form factors
obtained when projecting the Coulomb repulsion onto the
flat-bands away from the chiral limit [11]. Additional terms

are inspired by instantaneous interactions due to electron-

optical-phonon interactions, O⃗3 ¼ ðσyτz; σxÞ with λ3 ¼ g1,

and O⃗4 ¼ ðτxσx; τyσxÞ with λ4 ¼ g2. Their structure is
dictated by the electron-phonon coupling to low-

momentum phonons (O⃗3) and to valley-momentum pho-

nons (O⃗4) [18]. The phonon-induced interactions are
attractive, i.e., g1, g2 < 0. The interactions preserve C2,
T , and C3 ¼ e2πi=3σzτz symmetries [35].
We study the model (1)–(3) using a variational Hartree-

Fock approach. We minimize the grand-potential Φ, at a
given temperature T and chemical potential μ, generated
by the variational Hamiltonian HMF ¼

P
k Ψ

†
khMFðkÞΨk

[26]. We note that in the mean-field approach, due to the
local nature of the interactions, the details of the non-
interacting dispersion do not play a role, only the DOS. We
explore three kinds of spontaneous symmetry breaking in
hMF: (i) Flavor-symmetry breaking, i.e., one or several of
the operators fsz; τz; τzszg attain a finite expectation value;
(ii) intraflavor sublattice-symmetry breaking (σz terms),
leading to Chern gaps; (iii) IVC order with a finite
expectation value for τx cos γ þ τy sin γ. We restrict our
analysis to IVC terms of the form

Δ�
ivc

1� szτz
2

τysxσy: ð4Þ

This order parameter resembles the Kramers-IVC of
Ref. [11], with an effective time-reversal symmetry
T 0 ¼ τysxK. The choice of sxσy in Eq. (4) is justified
a posteriori by examination of the mean-field inter-
action energy (see Supplemental Material, Sec. S1 [26]).
We find that the g2 interaction favors orders where the
spin is antialigned in opposite valleys, justifying sx in
Eq. (4). Moreover, we find Uδ and g1 favor states where
hc†τsσcτ̄ s̄ σ̄i ¼ −hc†τsσ̄cτ̄ s̄ σi�, so IVC orders ∝ σy gain inter-
action energy. Lastly, our analysis suggests sublattice-
symmetry breaking is favored by g1, yet suppressed
by Uδ. The interplay between these interactions is key to

FIG. 1. Temperature and filling (ν̃, see Supplemental Material [26], Sec. S3) phase diagram of the model. We plot the resistivity,
inversely proportional to the compressibility far from the superconducting phase, see Supplemental Material [26], Sec. S5. The model
features CIs near certain integer fillings and superconductivity, both in qualitative agreement with experiments. We used the interaction
parameters [Eq. (3)] UC ¼ 0.7W, Uδ ¼ 0.15W, g1 ¼ g2 ¼ 0.12W, and phonon-mediated attraction strength [Eq. (6)] V� ¼ 0.24W.
Inset: DOS of the single-particle Hamiltonian (2). For a detailed schematic phase diagram, and the effect of weaker Coulomb
interactions, see Supplemental Material [26].
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understanding why insulators at odd fillings are experi-
mentally less robust than those at even fillings.
Mean-field phase diagram results are displayed in Fig. 2.

Panels (a)–(b) show the filling νi of each flavor for different
values of Uδ and g1. Our results feature a sequence of
symmetry-breaking phase transitions. At the CNP, the
system is in a fully gapped IVC state. With increased μ,
the IVC gap in one τzsz sector closes, and the two flavors
making up that sector begin to populate [near
ðμ − μCNPÞ=W ≈ 0.4 in Fig. 2]. This is followed by fla-
vor-symmetry breaking within that sector, where one flavor
is depleted and the other is filled. Depending on details, the
depleted flavor may develop a Chern gap, leading to an
incompressible region near ν ¼ 1. Increasing μ further,
this flavor is gradually filled. This process repeats for the
flavors in the other IVC sector (starting at ν ¼ 2), following
an incompressible regime, where two flavors are full, and
two others are IVC gapped.
We note that in a region around ν ¼ 1, flavor polarization

develops in the IVC sector, yet it remains incompressible.
This is due to spin polarization in the more populated
sector, promoting opposite polarization in opposing val-
leys, gaining interaction energy ∝ jg2j.
In Fig. 2(c) we plot the compressibility dν=dμ as a

function of α≡ ½ðUδ − g1Þ=ðUδ þ g1Þ� and ν̃. The latter is a
proxy for the filling fraction representing the experimental
scenario, where a back-gate voltage tunes the electron
filling, see Supplemental Material, Sec. S3 [26]. As α
increases, (g1 becomes smaller compared to Uδ) the odd-
filling gaps close and eventually vanish at α ∼ 0.7, giving
way to finite but low compressibility [24]. This trend agrees
with our analytical examination of the roles of Uδ and g1.

The ν̃ ¼ 0, 2 incompressible IVC states weakly depend on
α, and thus expected to be more robust.
The phase diagram establishes that the appearance of CIs

either at all integer fillings, or only at even ones, depends
delicately on the details and hierarchy of the effective
interaction terms [36]. We note that the appearance of
σy–IVC orders at even fillings agrees with the predictions
of Ref. [11] and was verified numerically [39]. This is
expected as the Uδ term captures the effect of the density
form-factors of the projected interaction. Our model thus
provides a tractable way of going beyond specific integer
fillings and tracking the evolution of the mean-field ground
state with μ.
Superconductivity.—Our starting point of examining

superconductivity in MATBG is the symmetry-breaking
cascade obtained above. We explore intervalley pairing
mediated by electron-phonon interactions. The intervalley
pairing is favored both by the acoustic phonons [19]
and since intravalley Cooper pairs have finite momentum.
Thus, we focus on valley-degenerate areas in the phase
diagram. We note that scenarios where the superconducting
condensation energy gain is sufficient to depolarize
opposite-valley flavors are not considered.
As discussed, the model favors intervalley antiferro-

magnetism, naturally preferring opposite-spin pairing.
Restricting our discussion to the simplest scenario where
the pairing lacks sublattice structure (it is sufficient to
capture the most salient experimental features), we study
the pairing amplitude Δτs ¼ ΔτsA ¼ ΔτsB, where

Δτsσ ¼
1

Ω

X

k

hcτ̄ s̄ σð−kÞcτsσðkÞi: ð5Þ

We note that due to the aforementioned spontaneous spin-
valley locking and flavor-symmetry breaking, the system
attains nonzero spin-triplet pairing correlations [40]. This
may lead to phenomenology similar to that of Ising
superconductors, namely, a critical in-plane magnetic field
that is set by the normal-state energetics, exceeding the
Pauli-Chandrasekhar-Clogston limit [41–43].
Adopting a Tolmachev-Morel-Anderson renormaliza-

tion group (RG) approach [44,45], we account for the
effects of Coulomb repulsion as well as the phonon-
mediated attraction. Neglecting the attraction for now,
we begin with the action S ¼ SMF þ SCooper, where SMF
is corresponds to the solution of the variational procedure,
and SCooper ¼

R
d2x

P
τsσ c

†
τsσc

†
τ̄ s̄ σ½ðUC=2Þcτ̄ s̄ σcτsσ−

ðUδ þ jg1jÞcτ̄ s̄ σ̄cτsσ̄� is the interaction in the Δτs
Cooper channel. Following the standard RG procedure
[26,46], we find the flow of the coupling constant V as a
function of the energy cutoff Λ. The initial conditions are
Λ0 ¼ W, and V0 ¼ ðUC=2Þ − ðUδ þ jg1jÞ. Notice the sec-
ondary interactions enhance pairing whereas Coulomb
repulsion suppresses it.

FIG. 2. (a) T ¼ 0mean-field occupation νi of individual flavors
and total filling ν as a function of chemical potential. Gray
rectangles mark incompressible regions. Interaction parameters
used: UC ¼ 0.75W, Uδ ¼ g1 ¼ 0.1W, g2 ¼ 0.08W. (b) Same as
(a), with Uδ ¼ 0.2W and g1 ¼ 0. (c) Compressibility dν=dμ as a
function of ν̃ and α≡ ½ðUδ − g1Þ=ðUδ þ g1Þ�, retaining
Uδ þ g1 ¼ 0.2W, and all other parameters from (a)–(b). Notice
(a) corresponds to α ¼ 0 and (b) to α ¼ 1.
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We now address the role of the acoustic phonon branch
mediating the retarded attraction. We observe that due to
folding of the phonon spectrum into the mBZ [47,48],
one should also consider generated “pseudo-optical”
branches. Consequently, the RG equation for the coupling
constant is [26]

d
dΛ

V ¼ N ðΛÞ
Λ

V2 þ V�

W
; ð6Þ

where the conventional RG flow yields the first term, with
N ðΛÞ the electronic DOS. The nonstandard second term
appears because as one lowers the cutoff, more phonon
modes become attractive, we denote their total contribution
by V�, see Supplemental Material [26], Sec. S4.
Using Eq. (6), in conjunction with the mean-field results,

we find Tc, extracted as the scale at which the coupling
constant becomes comparable with the bandwidth,
jVðTcÞj ¼ W, signaling its divergence. Notice because
W is the scale at which retarded phonons begin contrib-
uting, at a given V� and V0, Eq. (6) may lead to a criticalW,
below which superconductivity is lost. This is due to the
retardation being ineffective in changing the sign of V
along the shorter RG flow. Figure 3 tracks the evolution of
superconductivity domes with increasing phonon-mediated
attraction V�.
To take into account the effects of superconducting phase

fluctuations on transport, which may be significant as Tc
and TF become comparable, we use the Halperin-Nelson
formula to calculate the resistivity (Supplemental Material,
Sec. S5 [26,49]). The difference between the mean-field
Tc and the BKT temperature can be parametrized by
TBKT ¼ Tc=ð1þ τcÞ, where τc ≈ Tc=TF. Experimental
estimates [3] of τc ∼ 0.05–0.1 in MATBG are in qualitative
agreement with the values obtained for Tc and TF with our
model, where we find τc in a similar range on the hole side
of Fig. 1, and τc reaching up to ∼0.3 on the electron side.

Nonzero normal-state Δ�
ivc modifies the dispersion, ena-

bling an appreciable Fermi-level DOS even at minuscule
fillings. It thus contributes to increasing Tc=TF as com-
pared to what is expected from a Dirac-like dispersion.
Figure 1 features three superconducting domes on the

hole side. The most prominent one occurs at ν̃ ¼ −2 − ϵ,
bordering the ν̃ ¼ −2 IVC phase. Here, the gap in the IVC
sector gradually closes with decreasing ν̃, until it vanishes.
The suppression in superconductivity near ν̃ ≈ −3 occurs
due to flavor polarization, similar to those shown in Fig. 2.
Superconductivity at this filling is the most experimentally
robust, often observed with similar double-hump shape [3].
This shape is due to the two-step process, where first the
IVC gap closes with doping, and then two gapless flavors
get populated. A similar, but narrower and higher
dome emerges at ν̃ ¼ 2þ ϵ. This is because the electron
side has larger DOS leading to stronger effective repulsion
and wider regions with flavor polarization. On the other
hand, without polarization the larger DOS leads to
higher Tc.
A secondary superconducting feature observed in some

experiments appears near jνj ¼ 2 − ϵ, and is also manifest
in our model at ν̃ ¼ −2þ ϵ. Its existence is due to
depolarization of the two non-IVC flavors when ν̃ is
decreased (see Supplemental Material, [26], Fig. S1),
resulting from the drop in DOS near the band edge.
Thus, this feature is sensitive to the flat-band dispersion
details, possibly explaining its haphazard occurrence.
Lastly, we find superconductivity near the CNP, seldom

observed in experiments [6]. Essentially, it is a modified
copy of the ν̃ ¼ −2 − ϵ dome, with two flavors facilitating
the pairing, and two forming a gapped-IVC state. It has an
electron-side counterpart, too.
Discussion.—We presented a simple phenomeno-

logical model unifying key features of MATBG, namely,
interaction-induced CIs at integer fillings, flavor-
symmetry-breaking phase transitions, and nonstandard
superconductivity, and demonstrating their interplay.
Though we neglect ingredients known to be found in
MATBG, i.e., long-range Coulomb interactions, intricate
wave functions, fragile topology, and filling-dependent
band structure, much of the phenomenology is remarkably
reproduced. Our minimalistic description of the system’s
degrees of freedom, and the hierarchy of the interaction
energy scales, help to comprehend the experimental phase
diagram and its variations between different devices.
The model incorporates two important effects of the

twist-induced moiré lattice. First, generation of a flat-band
dispersion, with greatly enhanced DOS [1]. Second, a
dramatic increase of the electron-phonon coupling [19].
The large DOS enhances the effects of both electron-
electron repulsion and the effective phonon-mediated
attraction. Here, we use a mean-field approach combined
with RG method to study the interplay of the two.
Within this paradigm, one expects that the CIs and

FIG. 3. Superconducting Tc enhancement with increasing
retarded attraction V� near representative fillings. We used the
parameters of Fig. 1, with V� ∈ ½0.12; 0.32�W, in steps of 0.01 W.
Red: incompressibility regions. Direction of increased V� is
indicated, as are the schematic mean-field states from which
superconductivity emerges.
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superconductivity compete with one another. This is con-
sistent with experiments where the strength of the Coulomb
interaction is tuned by manipulating the screening envi-
ronment [5,16,17]. Another side effect of this interplay is
spontaneous spin-valley locking, e.g., near ν ¼ −2 − ϵ, that
may be weakly sensitive to parallel in-plane magnetic
fields, leading to a superconducting order parameter with
appreciable spin-triplet pairing correlations.
It is worth noting the discrepancies between our sim-

plified model and experimental observations. In most
experiments, the CNP phase appears semimetallic (though
there are notable exceptions). Here, we find the strongest CI
at this filling. Furthermore, we find that a jνj ¼ 3 insulator
is accompanied by an insulator at jνj ¼ 1, seldom seen in
experiments. One possible cause is a modification of the
band structure itself the filling changes. It has been argued
[50–53] that the flat bands are least flat near charge
neutrality, which may explain the empirical scarcity of
insulators at low fillings. Another possibility is that the
semimetal at the CNP is promoted by strain [54]. These
effects are not considered in this work. Moreover, there is
convincing experimental evidence [55,56] that flavor fluc-
tuations near jνj ¼ 1 are non-negligible, suggesting one
should include spin and valley fluctuations to fully under-
stand this regime.
Disorder was also not explored in this model. As was

suggested [57], it may settle the discrepancy regarding
the CNP insulator, as well as the absence of a quantized
transverse response at odd fillings CIs. Our proposed
framework can help elucidate the roles of both fluctuations
(treating our phase diagram as a saddle point around which
fluctuations occur) and disorder (quantifying the competi-
tion between phases and accounting for how disorder
affects it).
Our model may be used to investigate additional super-

conducting channels, e.g., d wave [18], and explore under
what conditions they become dominant. Furthermore, this
scheme, with different interactions, single-particle terms,
or DOS, may apply to other moiré platforms displaying
correlation-induced phenomena, e.g., ABC-stacked trilayer
graphene on hexagonal boron-nitride (hBN) [58], twisted
double-bilayer graphene [59,60], MATBG aligned with
hBN [61,62] (where we may explain the absence of
superconductivity, Supplemental Material [26], Sec. S6),
and magic-angle twisted trilayer graphene [63,64].
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