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We show that in a two-dimensional electron gas with an annular Fermi surface, long-range Coulomb
interactions can lead to unconventional superconductivity by the Kohn-Luttinger mechanism. Super-
conductivity is strongly enhanced when the inner and outer Fermi surfaces are close to each other. The most
prevalent state has chiral p-wave symmetry, but d-wave and extended s-wave pairing are also possible. We
discuss these results in the context of rhombohedral trilayer graphene, where superconductivity was
recently discovered in regimes where the normal state has an annular Fermi surface. Using realistic
parameters, our mechanism can account for the order of magnitude of Tc, as well as its trends as a function
of electron density and perpendicular displacement field. Moreover, it naturally explains some of the
outstanding puzzles in this material, that include the weak temperature dependence of the resistivity above
Tc, and the proximity of spin singlet superconductivity to the ferromagnetic phase.
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Introduction.—Graphene based two-dimensional materi-
als offer a unique platform to study correlated electron
phenomena with an unprecedented level of control [1–10].
Among these, rhombohedral trilayer graphene (RTG) [11–
14] has recently been shown to exhibit a rich phase diagram,
including several spin and valley polarized states, tunable by
varying the electron density and perpendicular electric field
[15]. Most strikingly, two distinct superconducting phases
were discovered in different regions of the phase diagram
[16]. The emergence of superconductivity in this ultrapure
and tunable system calls for a theoretical understanding,
potentially shedding light on long-standing problems in
condensed matter physics and opening the way to future
applications.
In this Letter, we examine the key experimental facts

about superconductivity in RTG, and identify two puzzles
that seem difficult to reconcile with conventional, phonon-
mediated superconductivity. We argue that these puzzles
can be resolved if one assumes an unconventional mecha-
nism for superconductivity [17]. Interestingly, supercon-
ductivity is found in regimes where the normal-state Fermi
surface (FS) has an annular shape, with an inner electron
pocket and an outer hole pocket. We show that an annular
FS is beneficial for an electronic mechanism for super-
conductivity [18–24], driven by repulsive Coulomb inter-
actions. Using a microscopic model for RTG with realistic
parameters, we find that the most likely candidate for the
superconducting order parameter is a chiral p wave,
followed by extended s wave [25].
Superconductivity in RTG.—The band structure of RTG

[11,12] exhibits strong peaks in the density of states,
tunable by a perpendicular electric field, at finite density

of electron or holes. Therefore, upon doping RTG under-
goes a cascade of phase transitions between different spin
and valley polarized phases [15], reminiscent of the
observations in twisted bilayer graphene [26,27], despite
the absence of a moiré lattice in RTG.
Recently, two superconducting phases were discovered

in the hole-doped side, labeled by SC1 and SC2 [16]. SC1
is found within the flavor-symmetric phase. Its maximum
critical temperature is Tc1 ≈ 100 mK. SC2 occurs within a
fully spin-polarized, valley-unpolarized half-metal, with a
Tc2 ≲ 50 mK. In both phases, the coherence length is
shorter than the mean free path, placing them in the clean
limit. The in-plane critical magnetic field of SC1 is
consistent with the Pauli limit [28,29], while for SC2 the
critical field exceeds the limit by an order of magnitude.
It has been proposed [30] that RTG is a “conventional”

phonon-driven superconductor, with an s-wave-like gap
wave function within each valley. We point out two
difficulties with this scenario. First, coupling to acoustic
phonon modes should lead to a linear dependence of the
resistivity for T ≳ ΘBG=4, where ΘBG ≈ 40 K is the Bloch-
Grüneisen temperature at the density range of SC1.
However, the resistance of RTG above SC1 is nearly
temperature independent up to T ¼ 20 K [16]. This is
unlike many conventional superconductors, where esti-
mates for the dimensionless electron-phonon coupling from
Tc and from the slope of the resistivity vs T typically
agree [31]. Second, SC1 emerges out of a spin- and valley-
unpolarized normal state [15,16]. As explained below, SC1
can be either spin singlet or triplet, and one expects the
intervalley exchange coupling JH to determine which one is
realized. Experimentally, SC1 is spin singlet, which implies
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JH < 0 for an s-wave-like gap function. This is in apparent
contradiction with the presence of a spin polarized ferro-
magnetic state nearby in the phase diagram, that requires
JH > 0 [32].We argue that both of these puzzles are
resolved for an all-electronic mechanism that leads to
unconventional superconductivity.
Model.—The Hamiltonian used to describe rhombo-

hedral trilayer graphene reads

Ĥ ¼ Ĥ0 þ ĤC; ð1Þ

where Ĥ0 ¼
P

k;τ;sΨ
†
kτshkτΨkτs is the single-particle part

[12]. hkτ is a 6 × 6 matrix in the basis ðA1; B1; A2;
B2; A3; B3Þ, corresponding to the A, B sublattices of layers
1,2,3 [Fig. 1(a)] that is written explicitly in the
Supplemental Material [33]. The valley and spin indices
are denoted by τ and s, respectively. Ψ†

kτs is a spinor
containing the operators ψ†

k;l;σ;τ;s, that create an electron
with momentum k, at layer l ¼ 1, 2, 3 and sublattice
σ ¼ A, B. The Coulomb interaction between Fourier
component of the density ρq ¼

P
kτsΨ

†
kτsΨkþqτs is given by

ĤC ¼ 1

2L2

X
q

V0;qρqρ−q; ð2Þ

where V0;q ¼ ð2πe2=ϵqÞ tanhðqdÞ is the Coulomb potential
screened by two metallic gates at distance d above and
below the RTG, ϵ is the dielectric constant, and L2 is the
area of the system.
Near the Fermi level, the band structure of hkτ consists of

a conduction and a valence band separated by a gap 2Δ1,
proportional to the perpendicular displacement field. Δ1

and the carrier density ne, controlled experimentally by gate
voltages, tune the system between different phases.
We project the Hamiltonian onto the valence band, where

SC1 and SC2 occur. This amounts to substituting ρq by
ρ̃q ¼

P
k;τ;s Λk;q;τc

†
k;τ;sckþq;τ;s, where c†k;τ;s creates an elec-

tron at momentum k in the valence band in valley τ and spin
s, and Λk;q;τ ¼ huk;τjukþq;τi is an overlap between Bloch
wave functions of the valence band, juk;τi.
We investigate superconductivity within a purely elec-

tronic mechanism, driven by the Coulomb interaction.
Within this mechanism [18,20], pairing is mediated by
particle-hole fluctuations at a broad range of energies. The
effective interaction after screening by such fluctuations
depends weakly on frequency, and will be treated as
instantaneous. Within the random phase approximation
(RPA), this interaction is given by

Vq ¼
V0;q

1þ Π0;qV0;q
; ð3Þ

where Π0;q ¼ N
P

k jΛk;q;τj2f½fðεk;τÞ − fðεkþq;τÞ�=
ðεkþq;τ − εk;τÞg is the static polarization function, with
εk;τ being the dispersion of the valence band in valley τ.
fðεÞ is the Fermi function. N ¼ 4 is the number of spin and
valley flavors. Note thatΠ0;q is independent of τ due to time
reversal symmetry.
The RPA interaction Hamiltonian is given by ĤRPA ¼

ð1=2L2ÞPq Vqρ̃qρ̃−q. The superconducting Tc is found by
solving the linearized BCS gap equation using Eq. (3) as
the pairing interaction [33]. The gap equation reads

Δk ¼ − log

�
W
Tc

�Z
FS

dk0k
ð2πÞ2vk0

Vk−k0 jΛk;k0−k;þ1j2Δk0 ; ð4Þ

(a)
(d)

(f)

(e)

(g)

(b) (c)

FIG. 1. (a) RTG placed between two metallic gates at distance d away, and encapsulated by an insulator with dielectric constant ϵ. (b),
(c) Band structure and FS of the simplified circularly symmetric model and the realistic model, respectively. (d),(e) The polarization
function Π0;q within the simplified and realistic models, at density ne ¼ −1.19 × 1012 and ne ¼ −1.67 × 1012 cm−2, respectively. (f),(g)
SC dimensionless coupling constant λ vs density in the two models, colored for p wave (purple), extended s wave (yellow), and d wave
(cyan). The inset shows the solution of the linearized gap equation along the FS at certain values of ne. Red (blue) color represents
positive (negative) Δk. We used ϵ ¼ 4 and d ¼ 36.9 nm in (f)–(g) and Δ1 ¼ 20 meV in (e),(g).
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whereΔk is the SC order parameter at a point k on the FS in
valley τ ¼ þ1, vk is the magnitude of the Fermi velocity at
that point, and W is an upper cutoff of the order of the
Fermi energy. The integration is taken over all FSs. The
largest eigenvalue λ of the linear operator M defined
by MΔk ¼ −

R
dk0k=½ð2πÞ2vk0 �Vk−k0 jΛk;k0−k;þ1j2Δk0, yields

Tc ¼ We−1=λ.
Kohn-Luttinger mechanism: Idealized model.—Since

Vq > 0 for all q, a solution Δk of Eq. (4) must change
the sign across the FS. Therefore, the solution typically has
a non s-wave symmetry, depending on the structure ofΠ0;q.
For a single parabolic band in two dimensions, Π0;q is
constant up to q ¼ 2kF, and Eq. (4) has no solution [34]. In
the case of two subbands with different Fermi momenta, the
total polarization function is no longer a constant for
momenta smaller than 2kF of the outer FS, yielding
nontrivial solutions [23,24]. In RTG, both SC1 and SC2
occur in regions where the normal state exhibits an annular
FS, where the inner and outer Fermi surfaces have opposite
Fermi velocities. As we demonstrate, such a dispersion is
favorable for superconductivity.
We begin with a simplified model where the dispersion is

approximated as εk ¼ −ε0ðk2=k20 − 1Þ2 − μ, characterized
by an energy scale ε0 and a momentum scale k0, Fig. 1(b).
Moreover, we approximate Λk;q;τ ¼ 1. Because of the
rotational symmetry of this model, Π0;q can be computed
analytically [33]. Π0;q exhibits singularities for 2kF1, 2kF2,

and kF1 − kF2, where kF1;2 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

−μ=ε0
pq

are the

momenta of the outer and inner FS, respectively, see
Fig. 1(d).
The result for λ as a function of electron density is

shown in Fig. 1(f). At large hole densities where the

inner pocket disappears, λ is nearly zero. λ increases
discontinuously once the inner pocket appears (around
ne ¼ −1.7 × 1012 cm−2). The dominant superconducting
instability in this regime has p-wave symmetry. Upon
decreasing the density of holes, λ increases gradually.
Approaching the zero hole density limit, λ increases
sharply, and the dominant pairing channel changes to d
wave. λ diverges in the limit ne → 0, due to the diverging
density of states [33].
Kohn-Luttinger mechanism in RTG.—Turning to RTG,

we use a realisticmodel for the band structure andΛk;q;τ [33].
The resulting FSs of the inner and outer pockets in Fig. 1(e)
show a substantial trigonal warping, leading to anisotropic
Π0;q. However, some of the features are similar to those of
the circularly symmetric model. λ as a function of density
[Fig. 1(g)] is qualitatively similar to that of the circularly
symmetric model, showing a sharp increase at the density
where the inner pocket appears (ne ≈ −2.1 × 1012 cm−2),
followed by a gradual increase of λ with decreasing hole
density. The symmetry of the order parameter changes
from extended s wave (A1 representation of the point
group C3v of RTG with a perpendicular electric field), with
an opposite sign on the inner and outer Fermi pockets, to
p wave (representation E). λ diverges logarithmically at the
Van Hove density ne ≈ −0.5 × 1012 cm−2, where the annu-
lus reconstructs into three disconnected pockets. Focusing
on the p-wave phase and going beyond the linearized gap
equation, the favored state below Tc is a chiral px þ ipy

state, which can be derived by considering the quartic terms
in the Ginzburg-Landau free energy functional [33].
Importantly, in Eq (1), spin singlet and triplet pairing are

degenerate, independently of the orbital symmetry of the
order parameter. This counterintuitive result follows from
the SUð2Þ × SUð2Þ symmetry of the Hamiltonian, which
allows us to rotate the spin of one valley relative to the other
[30,35,36]. In the singlet (triplet) case, the order parameter
in valley τ ¼ þ1 has the same (opposite) phase to that of
valley −1, such that the Pauli principle is obeyed. We shall
discuss the lifting of the singlet-triplet degeneracy below.
Figures 2(a),2(b) show the density and Δ1 dependence

of λ in the spin and valley unpolarized phase [N ¼ 4 in
Eq. (3)], corresponding to the SC1 region in experi-
ment [16]. Increasing Δ1 shifts the peak corresponding
to the van Hove singularity (VHS) towards charge neu-
trality. However, there is a broad density regime (ne <
−0.8 × 1012 cm−2)where λ is an increasing function ofΔ1 at
a fixed density, following the trend of the density of states
withΔ1 in this regime. This is consistentwith the fact that the
SC1 phase is entered upon increasing electric field in the
unpolarized phase [16]. To account for Tc ¼ 0.1 K in SC1,
assuming thatW ≈ EF ≈ 50 K,we need λ ≈ 0.16. As seen in
Fig. 2, our theory can produce λ’s of this order. In the vicinity
of the VHS, λ diverges logarithmically, and our theory
breaks down. The VHS are not attained in experiment,
since they are preceded by Stoner transitions [15]. We note

(a) (c)

(b) (d)

FIG. 2. (a),(b) Coupling constant λ as a function of density and
displacement field Δ1 for the unpolarized state, N ¼ 4. (c),(d)
Same as (a),(b) assuming the spin polarization, N ¼ 2. The color
coding in (a),(c) is identical to Fig. 1. The white contours in
(b),(d) indicate λ ¼ 0.05, 0.1.
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that the dispersion features a higher order VHS at Δ1 ≈
18 meV [33,37].
Figures 2(c),2(d) show λ as a function of density and Δ1

assuming a spin polarized, valley-unpolarized state
(N ¼ 2), which corresponds to the experimentally observed
normal state of SC2 [15,16,38]. The overall trends are
similar to those of Figs. 2(a),2(b), although for a spin-
polarized normal state, the pairing is necessarily spin
triplet. The magnitude of λ is somewhat larger than for
N ¼ 4, due to stronger effective interaction [Eq. (3)]. This
is in apparent disagreement with experiment. We speculate
that the reason for this discrepancy is the residual Hund’s
coupling, not considered in Eq. (1), which may favor spin
singlet pairing (see below).
Finally, in Fig. 3 we show the dependence of λ on the

dielectric constant ϵ and the distance to the gates d for three
values of the electron density. λ increases with decreasing ϵ,
since superconductivity originates from repulsive inter-
actions. Interestingly, λ is nearly independent of d for d ≳
4 nm because the pairing benefits primarily from large
momentum scattering processes where q is of the order of
2kF [39].
Role of the Hund’s coupling.—The lifting of the degen-

eracy between between singlet and triplet pairing requires
an intervalley interaction that depends on the relative spin
of the two electrons. Such an interaction is short ranged in
real space, and receives contributions from the short-range
part of the Coulomb interaction and from electron-phonon
coupling [40,41]. The simplest term of this form is an
intervalley Hund’s coupling, HHund ¼ −JH

R
d2rSþ · S−,

where S� are the spin densities in the two valleys. JH may
be of either sign.
In general, JH > 0 (JH < 0) favors triplet (singlet)

pairing, respectively. However, for, e.g., a px þ ipy state,
HHund drops out of the linearized gap equation (4) and does
not lift the singlet-triplet degeneracy [33]. Physically, this is
because HHund is local in real space, and nonzero angular
momentum of px þ ipy leads to vanishing amplitude of the
two electrons to be at the same location.

To lift the degeneracy in the px þ ipy state, one needs to
go beyond the assumption of a momentum indepen-
dent (i.e., local) Hund’s term. We assume that the effec-
tive Hund’s coupling depends on distance, JHðr − r0Þ.
Expanding its Fourier transform J̃H at small momenta as
J̃HðqÞ ¼ JH;0 þ JH;2ðqaÞ2 þOðq4Þ (where a is the gra-
phene lattice spacing), we find that JH;2 > 0 (JH;2 < 0)
favors singlet (triplet) pairing [33]. Hence, the lifting of the
degeneracy is determined by the sign of the residual
nonlocal Hund’s coupling, which can be of either sign
relative to JH;0, depending on microscopic details. JH;2 > 0

corresponds to a negative second moment of JHðrÞ, i.e., the
effective Hund’s coupling is antiferromagnetic in some
range of distances, which promotes singlet pairing.
Deriving the effective Hund’s term microscopically is

notoriously difficult [41]. Instead, we can determine the
signs of JH;0 and JH;2 from the experiment. We assume that
JH;0 > 0, favoring ferromagnetism, and JH;2 > 0, favoring
singlet pairing in the px þ ipy phase. Hence, the SC1
phase, which emerges out of a spin-unpolarized normal
state, is spin singlet. Note that for a simple s-wave order
parameter (with no sign change of Δk within a single
valley), the leading-order JH;0 term is sufficient to lift the
singlet-triplet degeneracy. Hence, JH;0 > 0 (required by the
presence of valley-unpolarized ferromagnets) implies that
SC1—if it were simple s wave—should be spin triplet, in
contradiction with experiment.
The normal state of SC2 is a fully spin polarized

ferromagnet, and hence SC2 must be spin triplet, which
is consistent with the strong violation of the Pauli limit in
SC2 seen in experiment. In our model, the spin triplet state
is disfavored by JH;2 > 0, which can potentially explain the
fact that Tc of SC2 is substantially lower than that of
SC1 [16]. That being said, we emphasize that for SC2, spin
triplet pairing is still much favored over spin singlet,
because there are no opposite spins to pair with at the
Fermi energy.
Discussion.—We demonstrated that repulsive inter-

actions can give rise to robust unconventional supercon-
ductivity in two-dimensional systems with annular FSs that
are similar to RTG in the parameter regimes where super-
conductivity was recently discovered. The Kohn-Luttinger
mechanism is consistent with the absence of a strong
temperature dependence of the resistivity above Tc and
can further explain the apparent discrepancy between SC1
being spin singlet and the presence of a nearby spin
polarized phase, implying that the intervalley exchange
coupling is ferromagnetic.
An outstanding question is whether the superconducting

state in RTG is indeed unconventional. In contrast to
s-wave pairing [42,43], unconventional SC is very sensitive
to non-magnetic disorder [44–47]. Thus, introducing con-
trolled amounts of disorder to the system could be used to
identify the nature of the superconducting state [48].
Another prediction of our theory is the near degeneracy

(a) (b)

FIG. 3. λ as a function of dielectric constant ϵ (a) and distance
to the gate d (b). The results are for Δ1 ¼ 20 meV and densities
listed in the legend correspond to the three pocket FS (blue), two
annular FS near VHS (red), and the regime of annulus away from
the singularity (black).
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between singlet and triplet pairing, which is also expected
within an electron-phonon mechanism [30]. As SC1 is
suppressed by an in-plane field, a triplet state may be
stabilized at lower temperature. So far, Tc of SC1 was
found to be suppressed below 50 mK with the application
of an in-plane field [16], but a triplet SC with a lower Tc is
possible. Furthermore, a fully spin polarized SC2 is
expected to have exotic properties, due to the intertwining
of the SC phase with the orientation of the magnetiza-
tion [49]. The most likely pairing state within our theory is
a chiral px þ ipy SC that breaks time reversal symmetry
and generates spontaneous edge currents [50–52]. Since
within the symmetry group of RTG p-wave and d-wave
pairings are not distinct from each other, the obtained
pairing is reminiscent of the spin-singlet chiral d-wave
pairing predicted for doped graphene [53–58].
The pairing mechanism proposed in this work is medi-

ated by electronic fluctuations with a broad spectrum, and
does not assume the existence of a soft collective mode at
low energies (that arises if the system is close to a
continuous phase transition). If such a soft mode exists,
it could enhance Tc further. Very recent studies of this
scenario [59,60] found a chiral p-wave state similar to
our work.
Finally, it is desirable to raise Tc in RTG and other

systems with annular FSs. Our theory predicts a significant
enhancement of λ near the VHS where the inner and outer
FSs meet. In RTG, the metallic state becomes unstable
towards spin or valley polarization before this point is
reached. We speculate that decreasing distance to metallic
gates d may suppress these instabilities, while not affecting
superconductivity significantly until d ≈ 4 nm (Fig. 3),
effectively enhancing SC phase.
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