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We introduce a new variational wave function for a quantum Hall bilayer at total filling νT ¼ 1, which is
based on s-wave BCS pairing between electron composite fermions in one layer and hole composite
fermions in the other. In addition, we reexamine a trial wave function based on p-wave BCS pairing
between electron composite fermions in both layers. We compute the overlap of the optimized trial
functions with the ground state from exact diagonalization calculations of up to 14 electrons in a spherical
geometry, and we find excellent agreement over the entire range of values of the ratio between the layer
separation and the magnetic length. The s-wave trial wave function naturally allows for charge imbalance
between the layers and provides important insights into how the physics at large interlayer separations
crosses over to that at small separations in a fashion analogous to the BEC-BCS crossover.
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Introduction.—The bilayer quantum Hall system at total
filling fraction ν ¼ 1 has been the subject of considerable
theoretical and experimental interest for more than two
decades [1,2]. The ν ¼ 1 bilayer quantum Hall system
consists of two two-dimensional electron systems separated
by a distance d. A magnetic field B perpendicular to the
layers is applied such that ν ¼ nϕ0=B ¼ 1, with n ¼ n↑ þ
n↓ the total electron density and ϕ0 ¼ 2πℏ=e the flux
quantum (↑ and ↓ refer to the two different layers). The
competition between inter- and intralayer Coulomb inter-
actions makes this system both interesting and challenging.
We assume here that all electrons are confined to the

lowest Landau level and are fully spin polarized. At small
interlayer distances d compared to the magnetic length
lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

, the ground state can be described as an
exciton condensate: the electrons in one layer form tightly
bound states with the holes in the opposite layer [1,3]. In
contrast, at infinite interlayer distances, the two layers
decouple completely such that each layer forms an inde-
pendent composite fermion (CF) liquid [4–6]. Since these
two limits are described in terms of different quasiparticles,
understanding how they are connected is a difficult pro-
blem. There has been an enormous amount of theoretical
work attempting to address this question [2,7–39].
In a recent paper by one of the current authors and one

with other collaborators [40,41], a new approach to this
crossover was proposed: s-wave BCS pairing of electron
CFs (eCFs, two flux quanta bound to an electron) in one
layer with hole-CFs (hCFs, two flux quanta bound to a
hole) in the other layer. This approach qualitatively appeals

in that it describes the correct types of quasiparticles both
for small d (excitons) and large d (CFs). Further, it naturally
allows a description in the case of imbalanced layers where
n↑ ≠ n↓. The purpose of this Letter is to numerically test
this proposal.
At small d=lB, the ν ¼ 1 system forms Halperin’s (111)

state [3]. This state can be viewed as a condensate of
interlayer excitons, or equivalently s-wave pairing of
electrons in one layer with holes in the other. This limit
is well described in Hartree-Fock [7] and is a good de-
scription even when the density is imbalanced between the
layers.
At large d=lB, the description of the layers is more

complicated. For infinite d=lB, the layers behave as
independent quantum Hall states. For the balanced case
of ν↑ ¼ ν↓ ¼ 1=2, each layer is well described as a CF
Fermi sea in zero effective magnetic field [4–6]. Away from
filling 1=2, the CFs see a residual magnetic field.
When the two ν ¼ 1=2 layers are then weakly coupled

together, we expect the CF liquids to become correlated
with each other. A possibility that was considered from
very early on is that the two layers form a BCS paired state
of eCFs [8–10]. Numerical work with trial wave functions
established [26] that the p-wave channel is the symmetry
channel with the largest gap. In exact diagonalization (ED)
studies, the p-wave paired state was shown [25,26] to have
very high overlaps with the exact ground state for d≳ lB.
In those studies, the overlap rapidly decreased at d ≲ lB.
However, Ref. [29] argued that the p-wave pairing state
could be continuously deformed to the exciton condensate
without going through a phase transition.
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In recent years, after the initial investigations into the
ν ¼ 1 bilayer, there has been renewed focus on the issue of
particle-hole symmetry in the ν ¼ 1=2 CF Fermi liquid
state [42,43]. While the single-layer half-filled Landau
level is particle-hole symmetric [44], the CF construction
[4,5] does not appear to respect this symmetry in any
obvious way. This then raises the question as to whether we
should view the half-filled Landau level as a Fermi sea of
eCFs or as a Fermi sea of hCFs removed from a filled
Landau level (we call this an “anti-CF” Fermi sea). While
the two descriptions are numerically almost equivalent
[45], there may, nonetheless, be advantages to thinking in
terms of one or the other.
In this Letter, we examine a new model of the ν ¼ 1

bilayer: s-wave pairing of the eCFs in one layer with hCFs
in the other layer. We show that a trial wave function based
on this approach has very high overlaps with the exact
ground state at all distances d=lB. The evolution of the
system as a function of d=lB is analogous to the BEC-BCS
crossover familiar from cold atom gases [46]. At large d,
we have weakly bound eCF-hCF pairs (BCS limit),
whereas at small d, we have tightly bound eCF-hCF pairs
tending toward the BEC regime. A nice feature of this
approach is that if one considers the Chern-Simons
(Halperin-Lee-Read [4]) description of CFs, the s-wave
pairing wave function described above exactly recovers
the d → 0 limit as the limit where the s-wave pairs have a
very small binding radius and the Landau level mixing is
neglected [41,47].
This approach also applies just as well to the case of

charge imbalance of the layers. If one transfers charge
between the layers, the two Fermi seas remain the same size
as each other, both growing or shrinking together, so that
the pairing is not destroyed. We find that the imbalanced
bilayer system still forms an s-wave paired state of eCFs
and hCFs. We also reexamine a trial wave function based
on p-wave pairing of eCFs in both layers and find
significantly higher overlaps than previous works [25,26]
such that the improved overlaps are comparable to the
newly introduced s-wave trial state.
Details of calculation.—We consider Coulomb interac-

tion e2=ϵr for electrons in the same layer (intralayer
interaction) and e2=ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
for electrons in different

layers (interlayer interaction). As mentioned above, we
assume that the physical spin of the electrons is completely
polarized due to the Zeeman splitting and exchange
interaction. We assume zero temperature and no disorder,
and we neglect Landau level mixing. We also assume no
tunneling between the layers, which is a good approxima-
tion of many of the experiments.
We perform ED on the sphere for systems of up to N ¼

14 electrons, i.e., N↑ ¼ N↓ ¼ 7 electrons per layer in the
balanced case. More generally, the total number of elec-
trons needs to satisfy N ¼ N↑ þ N↓ ¼ Nϕ þ 1, with Nϕ

the total number of flux quanta passing through the sphere,

such that we have total filling ν ¼ 1. We particle-hole
transform [48] the bottom layer such that we are describ-
ing it in terms of N↑ hole coordinates. Note in particular
that the number of holes in the bottom layer matches the
number of electrons in the top layer.
In the top layer, we form eCFs by attaching two Jastrow

factors to each electron. In the planar geometry, this
would be achieved by multiplying our wave function byQ

i<jðzi − zjÞ2, where zi ¼ xi þ iyi is the complex co-
ordinate of the ith electron at position ðxi; yiÞ. (Adaptation
to the spherical geometry is discussed in the Supplemental
Material [49].) The effective flux seen by the eCFs is
Neff

ϕ ¼ Nϕ − 2ðN↑ − 1Þ. In the bottom layer, we simi-
larly form hCFs, which see the same effective flux, by
attaching two anti-Jastrow factors by multiplying byQ

i<jðwi − wjÞ�2, where wi ¼ Xi þ iYi is the complex
coordinate of a hole at ðXi; YiÞ [53]. We then BCS pair
the eCFs from the top layer with the hCFs from the bottom
layer in the s-wave channel. We can write down a
variational pairing wave function based on this approach
(see the Supplemental Material [49] for details):

ΨBCS;s ¼
Y

i<j

ðzi − zjÞ2ðwi − wjÞ�2 detðGÞ

Gðzi; wjÞ ¼
X

l;m

glϕl;mðziÞϕ�
l;mðwjÞ; ð1Þ

where ϕl;m are the Jain-Kamilla orbitals [54,55] with
angular-momentum quantum numbers l, m describing
CFs in effective fluxNeff

ϕ . The gl are variational parameters.
Because of rotational symmetry, the variational parameters
cannot depend on m. This trial wave function approach
is similar to the BCS p-wave pairing approach of
Refs. [25,26] except that in that work eCFs are paired
with eCFs, whereas here eCFs are paired with hCFs. The
assignment of the terms s wave and p wave for the two
wave functions can be seen from two properties of the wave
function of the sphere (see [49]): (a) the behavior of the
wave function as two particles are brought close together:
the wave function scales like rl, where r is the separation of
the pair and l is the angular momentum; (b) the behavior of
the wave function as two particles are exchanged: the wave
function picks up a sign ð−1Þl under exchange.
We convert the ED ground state into position space and

compute the overlap with the trial state by performing
Monte Carlo integration. We use the probability distribu-
tion of the (111) state for the importance sampling. The
optimal variational parameters that maximize the overlap
are found using a dual annealing algorithm [56].
Balanced case.—Let us focus on the case where the

two layers are balanced, i.e., ν↑ ¼ ν↓ ¼ 1=2, and the
number of electrons per layer on the sphere is N↑. We
show the overlaps of the s-wave variational state with
the ED ground state in Fig. 1(a) for N↑ ¼ 6 (see the
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Supplemental Material [49] for other system sizes). For
N↑ ¼ 4, 5, 6, 7, we achieve overlaps squared of better than
0.95 by including 3,4,5,6 variational parameters, respec-
tively. Given that the Hilbert space dimensions of the
L2 ¼ 0 subspace in which the ground state and the trial
wave functions lie are DðL2 ¼ 0Þ ¼ 12, 38, 252, 1599,
respectively, the high overlaps obtained are significant. In
Fig. 1(a), we also show overlap results for the (111) state
and the p-wave paired state from Ref. [26], as well as the
CF Fermi liquid state (two uncoupled eCF liquids).
At very large distances, the CF Fermi liquid state is

essentially exact for N↑ ¼ 2; 6; 12…, where we have
enough eCFs to completely fill an integer number of
angular momentum shells. For unfilled shells, we construct
a Hund’s rule state of eCFs in each layer where we fill
orbitals so as to maximize the angular momentum of each
layer [57]. Both the p-wave and the s-wave variational
wave functions recover the CF Fermi liquid or Hund’s-rule

state for a suitable choice of variational parameters, at least
when N is such that one has a configuration with either an
integral number of completely filled angular-momentum
shells, or one with a single CF above the outermost filled
shell or with a single CF missing from the outermost shell.
At intermediate distances d=lB ∼ 1, the overlaps of both
the p- and s-wave variational wave functions have dips;
however, they remain extremely accurate in this regime. At
small interlayer distances, the (111) state is the exact
ground state as expected. Both the p wave and the s wave
capture this limit as well. As the number of variational
parameters is increased, both the s-wave and p-wave
overlaps rapidly improve at small d. (In the s-wave picture,
including more variational parameters allows us to form
more tightly bound excitons, hence recovering the (111)
state.) Our s-wave trial wave functions slightly outperform
the previous p-wave trial state for an equal number of
variational parameters. For example, in Fig. 1(a), both the
p- and s-wave functions have 5 variational parameters. The
squared overlaps at d ¼ 0 are 0.67, 0.95, and 1.00 for 3, 4,
and 5 variational parameters in the s-wave case, whereas
they are 0.56, 0.93, and 1.00 in the p-wave case. (See the
Supplemental Material [49] for more details.) Nevertheless,
for sufficiently many variational parameters, both the
s-wave and p-wave trial states have extremely good over-
laps. It is an interesting open question as to why these
seemingly different wave functions appear to describe the
same Hilbert space.
Note that the p-wave functions described here are

putatively the same as those Ref. [26]. However, a detailed
comparison will show that the overlaps with exact diag-
onalization we obtain here are somewhat better, particularly
at small d, given the same number (or even fewer)
variational parameters. In the present work, we use a
global optimization algorithm (dual annealing [56]) to
optimize the overlaps. Reference [26] used a gradient
descent algorithm, which may only find a local optimum
of the overlap.
In Fig. 1(b), we use the best variational s-wave trial wave

function to extract the BCS parametersΔ=EF and ξ (see the
Supplemental Material [49]), where ξ is the coherence
length (typical size of a Cooper pair), Δ is the super-
conducting order parameter, and EF is the composite
fermion Fermi energy. Note that in regular superconductors
Δ is precisely the excitation gap, but here the super-
conductor has been “composite fermionized,” so the
excitation gap may not precisely match Δ. We find a
crossover from the BEC-like regime (ξ≲ lB, Δ≳ EF) at
d≲ lB to the BCS regime (ξ ≫ lB, Δ ≪ EF) at d ≫ lB.
In this picture, we have a continuous crossover from the
exciton condensate of the (111) state to the BCS-paired
composite Fermi liquid.
Charge imbalance.—We now add a charge imbalance to

the two layers, while keeping the total filling fraction
constant. The filling fractions of the individual layers are

(a)

(b)

FIG. 1. Exact diagonalization results for a balanced system with
6þ 6 electrons on the sphere. (a) We plot the overlap of the trial
wave functions with the true ground state jΨGSi as a function of
the interlayer distance d. We compare the overlap of our s-wave
BCS state with the previously proposed p-wave BCS state of
Refs. [25,26]. The s- and p-wave curves are almost indistin-
guishable on this plot. For both trial wave functions, we include
5 variational parameters. We also show the overlaps with the
composite Fermi liquid (CFL) state and the (111) state, which are
accurate descriptions of the state in the large and small d limits,
respectively. The error bars denote the errors of the Monte Carlo
integration. (b) BCS parameters Δ=EF and ξ=lB extracted from
the s-wave variational wave function from (a). Δ is the s-wave
superconducting order parameter, EF is the Fermi energy, and
ξ is the coherence length. The evolution of the BCS parameters
as a function of the interlayer separation d is consistent with a
BEC-BCS crossover.
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now ν↑ ¼ 1 − Δν=2 and ν↓ ¼ 1þ Δν=2. Here, we present
results for the charge imbalanced s-wave eCF-hCF pairing
trial wave functions (see the Supplemental Material for a
discussion of the p-wave trial wave function for the
imbalanced case [49]). In our approach, we composite-
fermionize the minority carriers in each layer, consistent
with the experimental observation that the density of the
minority carriers sets the Fermi wave vector away from
half-filling [58,59]. We show the overlaps of our trial state
with the ED ground state in Fig. 2. For small layer
imbalances, our trial wave function performs less well at
small distances than in the balanced case; however, con-
sidering the dimension of the Hilbert space, the high
overlaps obtained even in the imbalanced case are signifi-
cant. At large d=lB, we expect the layers to form
independent CF states, which will successively fill angu-
lar-momentum shells. As mentioned above, our trial wave
function Eq. (1) can describe this accurately as long as the
shells are either filled, have a single CF in them, or are one
CF short of being filled. This largely explains why some of
the values of ðN↑; N↓Þ in Fig. 2 are very accurate at large
d=lB and some are inaccurate in this limit.
Experiments observe enhanced superfluid behavior with

layer imbalance [60–62]. We can conjecture the following
natural explanation for this. At half-filling, the eCFs (or
hCFs) are neutral quasiparticles. Away from half-filling, the
eCFs in the top layer develop charge eð1 − 2ν↑Þ ¼ eΔν,
while the hCFs in the bottom layer develop charge
eð1 − 2ν↓Þ ¼ −eΔν. In the imbalanced case, these two
charges can attract to improve the BCS pairing. However,
once Δν ∼ 1=2, we are close to 1=4þ 3=4 and the CF
description with two flux quanta attached to each electron
or hole should be replaced by a CF description where four
flux quanta are attached to each electron or hole. A detailed

comparison with experiment [60–62] would require exami-
nation of the energies of possible competing phases, which
is beyond the scope of this work.
Conclusion.—We proposed a new trial wave function for

the bilayer quantum Hall system where eCFs and hCFs pair
up in the s-wave channel. This trial state has very high
overlaps with the exact ground state for any interlayer
separation d. In this language, the bilayer system undergoes
a BEC-BCS crossover as the interlayer separation is varied.
At large d, the system is in the BCS limit with weakly
bound eCF-hCF Cooper pairs, whereas at small d, the
system enters the BEC regime with tightly bound eCF-hCF
excitons. We presented numerical results for the BCS order
parameter and the coherence length that support this
picture. Our trial state also performs extremely well for
imbalanced layers and the enhanced stability of the paired
state for imbalanced layers seen in experiments can be
viewed as a consequence of the CFs developing a nonzero
electric charge.
We also reexamined the trial wave function based on

pairing eCFs in both layers in the p-wave channel and
found that, by including sufficiently many variational
parameters and by using an improved optimization algo-
rithm compared to Ref. [25], this wave function can also
accurately describe the system for any interlayer separation
d. This is consistent with Ref. [29], which used field theory
arguments to show that the p-wave state can be continu-
ously connected to the (111) state.
Although both the s-wave and the p-wave trial states

give similar overlaps if sufficiently many variational
parameters are included, the BEC-BCS crossover only
appears naturally in the s-wave picture: eCF and hCF
excitons are equivalent to the electron and hole excitons
forming the (111) state in the tightly bound limit [63]. For
the p-wave wave function, there is no simple way to see this
(although field theoretic arguments in Ref. [29] suggest that
the p-wave and (111) state are related).

Numerical calculations were performed using the
DiagHam library. We thank Nicolas Regnault for assistance
with DiagHam. G.W. would like to thank Gunnar Möller,
Ajit Balram, and Frank Pollmann for useful discussions.
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part by the Science and Technology Center for Integrated
Quantum Materials under NSF Grant No. DMR-1231319.

FIG. 2. Exact diagonalization results for the overlap of the
s-wave BCS trial wave functions with the true ground state for
imbalanced layers with a total of 14 electrons (using 6 variational
parameters). The L2 ¼ 0 Hilbert space dimensions are 1599,
1319, 614, 205 for 7þ 7, 6þ 8, 5þ 9, and 4þ 10, respectively.
We note that in the limit d ¼ 0 the Hamiltonian has an enhanced
SUð2Þ pseudospin symmetry, which our trial states do not
exhibit, since the overlaps in different pseudospin sectors are
not identical.
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