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Flatbands appear in many condensed matter systems, including the two-dimensional electron gas in a
high magnetic field, correlated materials, and moiré heterostructures. They are characterized by intrinsic
geometric properties such as the Berry curvature and Fubini-Study metric. The influence of the band
geometry on electron-electron interaction is difficult to understand analytically because the geometry is in
general nonuniform in momentum space. In this work, we study the topological flatband of Chern number
C ¼ 1 with a momentum-dependent but positive definite Berry curvature that fluctuates in sync with
Fubini-Study metric. We derive an exact correspondence between such ideal flatbands and Landau levels
and show that the band geometry fluctuation gives rise to a new type of interaction in the corresponding
Landau levels that depends on the center of mass of two particles. We characterize such interactions by
generalizing the usual Haldane pseudopotentials. This mapping gives exact zero-energy ground states
for short-ranged repulsive generalized pseudopotentials in flatbands, in analogy to fractional quantum
Hall systems. Driving the center-of-mass interactions beyond the repulsive regime leads to a dramatic
reconstruction of the ground states towards gapless phases. The generalized pseudopotential could be a
useful basis for future numerical studies.
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The one-electron states in periodic solids are character-
ized both by their dispersion (variation of energy with
crystal momentum) and by their band geometry, defined by
the variation of the electronic wave function with crystal
momentum. In a single-band system, the band geometry is
defined by the quantum geometric tensor:

Qab
k ¼ hDa

kukjDb
kuki ¼ gabk þ i

2
ϵabΩk; ð1Þ

where ukðrÞ ¼ hrjuki is the periodic part of the Bloch wave
function ψkðrÞ, Da

k is the covariant derivative operator that
adiabatically transports the wave function along the spatial
direction a ¼ x, y, and ϵab is the antisymmetric tensor.
Here the Berry curvature Ωk, and the Fubini-Study metric
(FSM) gabk , are respectively the imaginary and real part of
the quantum geometric tensor [1].
The interplay of the band geometry and dispersion has

been elucidated on the single-particle level [3–5], where it
leads to many interesting phenomena including the anoma-
lous Hall effect [2,6]. Recent experimental and theoretical
interest on moiré materials has centered on the “flatband”
situation [7–12], where the electron dispersion is small
relative to interaction scales and the physics is controlled by
electron-electron interactions. A growing body of evidence

indicates that in flatband situations the band geometry plays
a crucial role in determining the electron-electron inter-
action physics. For example, in the canonical lowest
Landau level (LLL) problem of electrons with a continuous
two-dimensional translation invariance in a uniform per-
pendicular magnetic field, both gabk and Ωk are k indepen-
dent. This k independence enables detailed analytical
understanding of the physics even in the presence of strong
electron-electron interactions [13]. However, generically
in periodic lattice systems the band geometry is highly
nonuniform in momentum space, and while the interplay
between the band geometry and interactions has been
numerically studied [14,15] analytical understanding has
been limited [16–26].
In this Letter we take a step towards understanding

the relation between the band geometry and interaction
physics. Our work is inspired by the chiral model of
twisted bilayer graphene (CTBG) which at certain
“magic” twist angles realizes exactly dispersionless bands
[27]. The chiral model is understood as a kind of fixed
point Hamiltonian [28] capturing the interacting physics
of twisted bilayer graphene [29–31] and has the special
property [17–19,32] that while the band geometry is
nonuniform, the FSM is related to the Berry curvature
in the following way:
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gabk ¼ 1

2
ωabΩk; ð2Þ

where ωab is a constant determinant one positive sym-
metric matrix.
Following Ref. ([19]), we define ideal flatbands as

dispersionless Bloch bands with (i) a positive definite
Berry curvature that (ii) fluctuates in sync with the FSM
as in Eq. (2). We show that the ideal flatband assumptions
(i) and (ii) fix the forms of single-particle wave functions in
a topological flatband with Chern number C ¼ 1 (as occurs
in CTBG), establishing an exact correspondence between
an ideal flatband and the LLL. Using this correspondence
we show that the electron-electron interaction in an ideal
flatband with spatially fluctuating band geometry can be
exactly mapped to a center-of-mass (COM) dependent
interaction in the LLL, which can be systematically
characterized by the generalized COM pseudopotentials
derived here. We show that the resulting interacting
Hamiltonian possesses exact zero modes, corresponding
to the previously discussed generalization of the Laughlin
fractional quantum Hall (FQH) states [32]; however,
depending on the values of the COM interaction param-
eters, charge density wave states of lower energy may exist.
In the last section of the Supplemental Material (SM) [33],
we derive further implications for superconductivity and
the composite Fermi liquid phase in TBG flatbands.
Wave functions of C ¼ 1 ideal flatbands.—Locally,

such a flatband mimics a LL in k space: the quantum
geometric tensor at every k point has a constant null vector
Qab

k ωb ¼ 0, which also determines ωab ¼ ωaωb� þ ωa�ωb

in Eq. (2). This uniform null vector defines the k-space
complex structure [34,35] and gives the Bloch wave
function a universal form [19]:

ψkðrÞ ∼ ũkðrÞ expðik · rÞ; ð3Þ

where the bolded k gives the momentum vector and
unbolded k≡ ωaka is a complex number. The cell-periodic
function ũk is holomorphic in k up to a normalization
factor.
We define the k-space boundary condition for the

periodic part of the Bloch wave function:

ũkþbðrÞ ¼ eiϕk;be−ib·rũkðrÞ: ð4Þ

The complex phase ϕk;b must be holomorphic in k
because both ũkþb and ũk are. A nonzero Chern number
requires that ũk, as a function of k, must have disconti-
nuities in the Brillouin zone (BZ). Such discontinuities
show up at the BZ boundary as nonzero ϕk;b, in the bulk as
wave function singularities, or both [36]. For a C ¼ 1 ideal
flatband, it is necessary to have nonzero ϕk;b: in contrast,
Ref. ([19]) assumed ϕk;b ¼ 0 so discussions were limited to
wave functions of C ≥ 2.

The boundary condition ϕk;b plays a crucial role in
determining the wave function of the ideal band. Following
Cauchy’s argument principle, the BZ boundary integral
ð1=2πiÞ H dk∂k ln ũkðrÞ is an integer. We show in the SM
that this integer is equal to the Chern number and can be
written as [33]

C ¼ −
1

2π
ðϕk0þb1;b2 − ϕk0;b2 þ ϕk0;b1 − ϕk0þb2;b1Þ; ð5Þ

where, as illustrated in Fig. 1(a), b1;2 are primitive reciprocal
lattice vectors and k0 is the BZ origin. Insensitivity of the
Chern number to the choice of k0, combined with Eq. (5),
forces ϕk;b to be a linear function of k. Since ũk is
holomorphic in k, it is uniquely determined by the boundary
condition ϕk;b, giving the bulk wave function:

ψkðrÞ ¼ N kBðrÞΦkðrÞ; ð6Þ
where N k, BðrÞ, and Φk are the normalization factor,
a k-independent quasiperiodic function, and the LLL
wave function, respectively. Expressed in the symmetric
gauge, ΦkðrÞ ¼ σðzþ ikÞ exp ðik�zÞ exp ð− 1

2
jzj2 − 1

2
jkj2Þ

where σðzÞ is the modified Weierstrass sigma function
[37–40] and z≡ ωara [41].Generalizing to negative definite
Berry curvature is straightforward. We leave more detailed
discussions of the ideal flatband conditions, holomorphic
wave function Eq. (3), and the uniqueness of our C ¼ 1
model wave function Eq. (6) to the SM [33].
Band geometry of ideal flatbands.—We now explicitly

compute the band geometry of an ideal flatband using the
model wave function Eq. (6). Exploiting the magnetic
translation algebra of the LLL states, we find [33]

Ωk ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
det gk

p
¼ −1þ Δk logN k; ð7Þ

FIG. 1. (a) Geometry of the Brillouin zone: k0 is the origin, b1;2
are primitive reciprocal lattice vectors, and the dashed circle
sketches the orientation of the Brillouin zone boundary integral
used in Eq. (5). (b) Plot of reciprocal space of CTBG at the first
magic angle with reciprocal lattice vectors used in the main text
indicated, and the values of the Fourier modes wb Eq. (9)
indicated by the size of solid dots. We find the first two modes
w0 ¼ 1, w�b1;2;3 ¼ 0.243 dominate. The wb determine the single-
particle band geometry through Eq. (7) and Eq. (8), and the
interaction model Eq. (10).
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where Δk is the Laplace operator. Equation (7) shows that
the logarithm of the normalization factor N k is the k-space
Kähler potential [42], which controls the fluctuation of the
band geometry and can be explicitly calculated [33]:

N −2
k ¼

X
b

ηbwb exp ðik × bÞ exp
�
−
1

4
jbj2

�
; ð8Þ

where ηb ¼ þ1 if b=2 is a reciprocal lattice vector and −1
otherwise, and wb are the Fourier components of jBðrÞj2:

jBðrÞj2 ¼
X
b

wb expðib · rÞ; ð9Þ

where b ¼ m1b1 þm2b2, m1;2 ∈ Z is a reciprocal lattice
vector. The band geometry is uniform if wb≠0 ¼ 0.
Effective fractional quantum Hall model.—A conse-

quence of the exact wave function in Eq. (6) is that the
interacting physics in a C ¼ 1 ideal flatband is described
by a FQH-type model with a new umklapp interaction that
breaks continuous translation symmetry. We demonstrate
that this umklapp interaction captures precisely the fluc-
tuating band geometry of an ideal flatband.
We consider a generic translation invariant two-particle

interaction vðr1 − r2Þ. According to Eq. (6), projecting this
interaction into an ideal flatband yields an effective FQH
model with the interaction

ṽðr1; r2Þ ¼ jBðr1ÞBðr2Þj2 · vðr1 − r2Þ; ð10Þ

≈
X
q

�
w̃0 þ

X
bi;j¼1;2

ðw̃ieibi·rj þ H:c:Þ
�
vqeiqðr1−r2Þ;

ð11Þ

projected to the LLL, where the normalization factors have
been dropped due to their weak k dependence according to
Eq. (8). The factor jBðrÞj2 reduces the continuous trans-
lation symmetry of vðr1 − r2Þ to the discrete lattice trans-
lation symmetry of ṽðr1; r2Þ. Such a symmetry reduction
manifests itself as the inclusion of the “umklapp” terms
[43] that scatter electrons across the BZ which distinguish
Eq. (10) from the usual FQH models.
The effective FQH model Eq. (10) can be simplified by

retaining only the leading umklapp processes that scatter
electrons by the shortest distance in k space, because other
umklapp terms are suppressed after the LLL projection.
This leads to Eq. (11) where the umklapp interaction
parameters w̃0;1 can be easily derived from the Fourier
modes wb [44]. To verify the validity of this approximation,
we consider electrons at 1=3 filling in the spin-valley
polarized topological flatband of CTBG at the first magic
angle. In this case, BðrÞ is a two-component layer spinor
½iGðrÞ;Gð−rÞ�T [45]. The leading umklapp processes scatter
electrons by b1;2;3, shown in Fig. 1 with the same real
amplitude w̃1 due to the C3 and exact intravalley inversion

symmetries [45]. In Fig. 1(b), we plot the wave function’s
Fourier mode wb of jGðrÞj2 þ jGð−rÞj2 and find w0, wb1
dominate, which determines the parameters in Eq. (11)
to be ðw̃0; w̃1Þ ¼ ð1.35; 0.3Þ [44]. We assume electrons
interact via a layer-isotropic v1 Haldane pseudopotential
vðr1 − r2Þ ¼ δ00ðr1 − r2Þ [13]. Remarkably, the entire low-
energy spectrum of the CTBGmodel on the torus (blue dots
in Fig. 2), including both the threefold degenerate ground
states at zero energy and the gapped low-lying magneto-
roton mode [46,47], is well reproduced by the effective
FQH model Eq. (11) with w̃0 and w̃1 [red crosses in
Fig. 2(a)]. However, if we assume a uniform band geometry
by setting w̃1 ¼ 0, the obtained spectrum [red crosses in
Fig. 2(b)] shows significant deviations from the CTBG
spectrum although the ground states stay at zero energy.
This indicates our effective FQH model with nonzero w̃1

indeed captures the spatially fluctuating band geometry of
the CTBG flatband.
Center-of-mass pseudopotentials.—The exact many-

body zero modes observed above are the generalized-
Laughlin states given in Ref. ([32]), written here as
Φ ¼ ðQN

i¼1 BðriÞÞΨ, where Ψ is the usual LLL Laughlin
wave function. We now extend Haldane’s pseudopotentials
to capture the COM interactions. This allows us to
systematically study how interactions can stabilize FQH
states subject to nonuniform band geometry. We start by
rewriting Eq. (10) as follows:

ṽðr1; r2Þ ¼
Z

dq2þdq2−ṽqþ;q−e
iðqþ·Rþþq−·R−Þ; ð12Þ

¼
X
M;m

cM;mP̂
þ
MP̂

−
m; ð13Þ

(a) (b)

FIG. 2. Exact diagonalization of N ¼ 10 particles in a TBG
lattice of ðN1; N2Þ ¼ ð5; 6Þ unit cells on the torus geometry, where
N1;2 are the number of unit cells along each primitive lattice
direction. Many-body momenta K1 ∈ ½0; N1 − 1�, K2 ∈ ½0; N2 −
1� are integers labeling each energy level [48,49]. Blue circles are
energies of CTBG with relative interaction v1, and are the same in
both panels. Red crosses are energies of the FQH model Eq. (11)
with (a) ðw̃0; w̃1Þ ¼ ð1.35; 0.3Þ and (b) ðw̃0; w̃1Þ ¼ ð1.35; 0Þ.
Normalization factors Eq. (8) are taken into account in numerical
calculations. Including w̃1 in (a) closely reproduces the low-energy
details of the CTBG spectrum. Three exact zero modes are visible
in both CTBG and the FQH models.
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where Rþ and R− are the LLL projected COM and relative
coordinates of two particles. A generic two-particle inter-
action can be expressed in terms of its COM and relative
translational momentum qþ and q− as in Eq. (12). For
simplicity, we assume rotational symmetry, so that we can
define projectors P̂�

m ≡ 2
R ½d2q=ð2πÞ2�Lmðq2Þe−q2=2eiq·R�

which project the particle pair into its COM and relative
angular momentum sectors, respectively. The interacting
Hamiltonian ṽðr1; r2Þ can then be written as Eq. (13), where
cM;m ¼ R

dq2þdq2−ṽqþ;q−LMðq2þÞLmðq2−Þ is the generalized
pseudopotential coefficient and Lm is the Laguerre poly-
nomial. The cM;m can be extracted from the energy
spectrum of two interacting particles [50,51].
The key insight here is that if cM;1 > 0 and cM;m>1 ¼ 0,

the generalized Laughlin state Φ has exactly zero energy,
no matter how cM;1 depends on the COM angular momen-
tumM. We can thus construct a family of many-body states
that are topologically equivalent to the Laughlin state,
where the usual Laughlin state corresponds to the special
case where cM;1 is independent of M. Generalization to
periodic lattice systems without rotational invariance is
straightforward with generalized Laguerre polynomials
[52,53]. We emphasis that the statement is unchanged even
if rotational invariance is broken: Eqs. (10) and (11) exhibit
threefold exact zero modes at one-third filling for arbitrary
orders of umklapp scatterings of arbitrary strengths even
with the k-dependent normalization factors, as long as the
relative interaction is the v1 Haldane pseudopotential [33].
Center-of-mass interaction induced transitions.—We

now examine how the ground state and low energy physics
of the effective FQH model in Eq. (11) evolve with w̃1=w̃0.
We note that w̃1=w̃0 is constrained by the band geometry;
for example, on a rectangular lattice with the v1 interaction
jw̃1=w̃0j ≤ 0.25 [44]. However, sign changes in Ωk or
additional structure in the interaction may widen the
allowed range. In Fig. 3, we plot the ground state energies
in units of w̃0 on the rectangular lattice as a function of
w̃1=w̃0. We find that the ground state is the zero-energy
generalized Laughlin state for small jw̃1=w̃0j. However, for
large enough jw̃1=w̃0j, the ground state energy becomes
negative and the zero-energy generalized Laughlin state is
an excited state. The occurrence of the negative-energy
ground states can also be seen from the COM pseudopo-
tentials plotted in Fig. 3(b), where regions with negative
values are shown.
To further understand the negative-energy ground states

of the generalized FQH model, we compute the guiding-
center structure factor SðqÞ≡ ðhρðqÞρð−qÞi − hρðqÞihρð−
qÞiÞ=ðN1N2Þ, at w̃1=w̃0 ¼ 0.3 (before transition) and 0.5
(after transition) for N ¼ 12 electrons in the ðN1; N2Þ ¼
ð6; 6Þ lattice. The SðqÞ measures the density-density
correlations of guiding centers and ρðqÞ≡ expðiq · RÞ is
the LLL-projected density operator. At w̃1=w̃0 ¼ 0.3, the
ground states are in the many-body momentum K ¼ ð0; 0Þ
sector with exact zero energy. The corresponding structure

factor has continuous peaks consistent with the incom-
pressible Laughlin liquid. At w̃1=w̃0 ¼ 0.5, the ground state
is still in the K ¼ ð0; 0Þ sector, with nearby low-lying states
at�Kq and�C4Kq whereKq ¼ ð3; 0Þ and C4 is the rotation
by π=2. Remarkably, SðqÞ has discretized peaks exactly at
�Kq and �C4Kq. That the structure factor peak occurs
exactly at momenta corresponding to low-energy excita-
tions strongly suggests a gapless charge density wave
(CDW) at w̃1=w̃0 ¼ 0.5 [54]. The gapless CDW is analo-
gous to the stripe phase and Wigner crystal reported in
usual FQH systems at low filling factors. However, in
contrast to the usual FQH system, here the transition at a
fixed filling factor 1=3 is driven entirely by the band

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Center-of-mass interaction induced transitions.
(a) Ground-state energies of the model in Eq. (11) as a function
of w̃1=w̃0. Threefold exact zero modes are present for all values of
w̃1=w̃0 (which remains true if w̃n is included to any order n). The
appearance of negative-energy ground states is possible due to the
negative value of the center-of-mass pseudopotential plotted in
(b). Figures (c),(d) and (e),(f) are, respectively, the spectrum and
the ground-state guiding-center structure factor SðqÞ for the two
marked data points in (a) that represent typical phases before and
after the transition. (c),(e) At w̃1=w̃0 ¼ 0.3, the threefold degen-
erate zero-energy ground states, finite gap, and continuous peak
in SðqÞ are consistent with the Laughlin state. (d),(f) At
w̃1=w̃0 ¼ 0.5, the single negative-energy ground state, small
excitation gap, and discretized peaks in SðqÞ suggest a CDW
phase. Plots are for a rectangular lattice on the torus, with b1 ·
b2 ¼ 0 and jb1j ¼ jb2j. The system sizes are N ¼ 8, ðN1; N2Þ ¼
ð4; 6Þ in (a), and N ¼ 12, ðN1; N2Þ ¼ ð6; 6Þ in (c)–(f).
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geometry and the transition occurs as a level crossing in
Laughlin states’ momentum sector K ¼ ð0; 0Þ.
Discussion.—We have studied interacting physics in

ideal flatbands with inhomogeneous but constrained band
geometries. Employing the exact correspondence to LLLs,
we mapped the inhomogeneous band geometry in a
flatband to a COM interaction in the LLL. Remarkably,
as shown in Fig. 3(b), the COM interaction generically has
attractive components, driving a phase transition [55] from
the Laughlin state to gapless states.
The attractive interaction induced by band geometry

implies new physics; applying COM pseudopotentials
enables systematic studies of various instabilities which
will be immediately useful for a wide range of applications
[29–31,56–70]. We conclude with two more examples.
Recently, skyrmion pairing has been proposed to explain
the superconductivity in TBG [71], which was sub-
sequently numerically tested in a simplified LLL based
model with flatband geometries [72]. It is thus important to
examine how inhomogeneous band geometry influences
superconductivity. In the last section of the SM, we find
the COM interaction induced by band geometry in time-
reversal invariant TBG flatbands exhibits attractive com-
ponents, which would favor superconductivity when its
spatial pattern matches the superconducting order para-
meter. A thorough understanding requires extensive
numerical studies that we leave for future work. The
COM interaction is not only a novel concept but also a
useful numerical tool, which we demonstrate through the
second example by studying the stability of composite
Fermi liquid (CFL) in the spin-valley polarized CTBG
flatband. By continuously interpolating between the LLL
and CTBG flatbands using the ideal flatband theory, we
find that CFLs remain ground states of CTBG without
signatures of phase transitions. Generalizations to a higher
Chern number and Hofstadter-type models are interesting
future directions [73–77].
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