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In the vicinity of a quantum critical point, quenched disorder can lead to a quantum Griffiths phase,
accompanied by an exotic power-law scaling with a continuously varying dynamical exponent that
diverges in the zero-temperature limit. Here, we investigate a nematic quantum critical point in the iron-
based superconductor FeSe0.89S0.11 using applied hydrostatic pressure. We report an unusual crossing of
the magnetoresistivity isotherms in the nonsuperconducting normal state that features a continuously
varying dynamical exponent over a large temperature range. We interpret our results in terms of a quantum
Griffiths phase caused by nematic islands that result from the local distribution of Se and S atoms. At low
temperatures, the Griffiths phase is masked by the emergence of a Fermi liquid phase due to a strong
nematoelastic coupling and a Lifshitz transition that changes the topology of the Fermi surface.
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Introduction.—A central characteristic of finite- and
zero-temperature phase transitions is how the spatial and
temporal correlation lengths evolve as the transition is
approached. For clean and continuous phase transitions,
scaling theory predicts power-law divergences of both
correlation lengths as a function of control parameter, with
the critical exponents reflecting the universality class.
Moreover, the spatial and temporal correlation lengths
are closely related by the dynamics of the system [1–4].
In the presence of quenched disorder, this relation may be
lost. Quenched disorder is perfectly correlated in time, but
can harbor a spatially varying order parameter. In this
situation, a smeared phase transition can occur, where
ordered islands form within a disordered bulk [5,6].
Moreover, when order parameter fluctuations within the
islands are non-negligible, a Griffiths phase can emerge,
which leads to continuously varying critical exponents as a
function of temperature and control parameter, fundamen-
tally different to clean systems [7–13].
Experimentally, quantum Griffiths phases have been

identified in ferromagnetic alloys [14,15] and supercon-
ducting thin films [16–19] and they are being discussed in
the context of heavy fermions [20,21] and the hidden-order
phase of URu2Si2 [22]. In the thin-film systems, sharp
crossings of the magnetoresistivity isotherms have emerged
as a distinctive experimental signature [23–26]. A scaling
analysis revealed a temperature-dependent critical expo-
nent zν that diverges in the low-temperature limit. This is a
hallmark of a quantum Griffiths phase (ν is the critical
correlation length exponent, and z the dynamical exponent)
[8–13].

In this Letter, we report the experimental realization of
an unconventional quantum Griffiths phase in an electronic
nematic system. Specifically, we report the magnetoresis-
tivity of the quasi-2D bulk superconductor FeSe0.89S0.11
when tuned to the vicinity of its zero-temperature nematic
quantum critical point (QCP) using a hydrostatic pressure
of 4.7 kbar [Fig. 1(a)] [27]. Only at the nematic QCP, the
magnetoresistivity isotherms show a remarkably sharp
crossing at about 30 T over nearly two decades in
temperature up to 30 K. Scaling of the magnetoresistivity
yields a critical exponent zν which increases by more than
2 orders of magnitude and diverges at low temperatures, in
agreement with the quantum Griffiths scenario. This
divergence is much stronger than previous reports of
non-nematic systems where a comparatively modest
enhancement of zν was observed [16–19]. We argue that
the Griffiths phase is induced by the local distribution of
isoelectronic Se and S atoms that promote the formation of
nematic islands in the vicinity of the nematic QCP, as
shown in Figs. 1(b) and 1(c). Below a crossover temper-
ature T ≈ 10 K, the quantum Griffiths phase and the
nematic QCP appear to be masked by an emergent nonzero
energy scale which coincides with the reentrance of Fermi
liquid behavior attributed to a strong nematoelastic cou-
pling, as well as a topological Lifshitz transition of the
Fermi surface [27–29].
Methods.—Single crystals of FeSe1−xSx with x ¼ 0.11

sulfur substitution were grown using the KCl=AlCl3
chemical vapor transport method as described elsewhere
[30]. High-pressure, high-field measurements for samples
B and C were carried out in the 45 T hybrid DC facility in
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Tallahassee. We used Daphne Oil 7575 as pressure medium
which ensures hydrostatic conditions for much higher
pressures than reported here, and we used the ruby
fluorescence shifts below 4 K to determine the pressure.
Low-field measurements up to 13.5 T were carried out on
sample A in a QuantumDesign PPMS in Oxford. Here,
Daphne Oil 7373 was used, and the pressure was deter-
mined by the superconducting transition of tin. Samples
were aligned with the magnetic field parallel to the
crystallographic c axis to avoid breaking an in-plane
symmetry. Transport measurements were performed using
a standard 4 or 5 contact setup, using the AC LockIn
technique with a low frequency f ≈ 20 Hz, and a low
excitation current Ip ¼ 1 mA within the ðabÞ plane.
Results.—Figures 2(a) and 2(b) show the temperature

dependence of the magnetoresistivity of two different
single crystals B and C of FeSe0.89S0.11 under a hydrostatic
pressure of p ¼ 4.7 kbar, which are in the immediate
vicinity of their nematic QCPs [pc ¼ 4.8ð3Þ kbar for
sample B and 5.2(3) kbar for sample C, respectively as
shown in Fig. 1(a) and in the Supplemental Material
[27,31,39] ]. All magnetoresistivity isotherms cross around
a similar magnetic field, μ0H⋆ ≈ 28.6 T for sample B and
28.0 T for sample C, with similar resistivities ρ⋆ ≈ 32 and
34 μΩ cm, respectively. This crossing occurs over nearly
two decades in temperature 0.3 K≲ T ≲ 30 K and its

significance becomes evident in the resistivity plots as a
function of temperature in constant field, shown in Fig. 2(c).
ForH < H⋆, the resistivity follows a metallic-like behavior
with ∂ρ=∂T > 0 before the sample becomes superconduct-
ing below Ton

c ≈ 10 K [Fig. 2(d)]. Equivalently, the onset
magnetic field, Hon

c2, between the superconducting and

(a)

(b) (c)

(d)

FIG. 1. (a) Pressure-temperature phase diagram and (d) crystal
structure of FeSe0.89S0.11. The relative position of samples B and
C under a pressure of p ¼ 4.7 kbar are indicated by vertical lines.
(b),(c) The spatial distribution of small S atoms induces locally
varying critical pressures pcðrÞ and random local strains. Close to
the nematic quantum phase transition (QPT), this leads to the
formation of nematic islands. The scale shows the experimental
mean free path length λ [27].

(e) (f)
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(d)(c)
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FIG. 2. (a),(b) The isothermal magnetoresistivity of samples B
and C at a pressure of p ¼ 4.7 kbar cross at μ0H⋆ ≈ 28 T,
ρ⋆ ≈ 33 μΩ cm. Up and down sweeps show no hysteresis. The
pressure difference in brackets represents the distance to the
critical pressure [see Fig. 1(a) and in the Supplemental Material
[31] ]. (c) The same data as in panel (a), but as a function of
temperature in fixed field. (d) The actual and extrapolated zero-
field resistivities, ρðTÞ (solid line) and ρH→0 (points, see the
Supplemental Material [31]). Error bars are smaller than the
symbol size. The red dashed line is a fit to Fermi liquid behavior
(ρ0 ≈ 4.8 μΩ cm, A ≈ 0.038 μΩ cm=K2). (e) The first derivative
reveals the onset of superconductivity, indicated by arrows. Large
quantum oscillations (QO) can be seen for H > H⋆. (f) The
extrapolation of the superconducting (SC) onset coincides
with H⋆ only at T ¼ 0. All reported data are measured at
p ¼ 4.7 kbar.
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normal phases can be identified in magnetic fields smaller
than H⋆ in Fig. 2(e) whose zero-temperature extrapolation
coincides with H⋆ [Fig. 2(f)]. Thus, the magnetoresistivity
crossing occurs strictly within the non-superconducting
normal phase for all finite temperatures [H⋆ > Hon

c2ðTÞ],
implying that this behavior describes the normal phase in the
vicinity of the nematic QCP.
In high magnetic fields above H⋆, the resistivity shows

insulatinglike behavior (∂ρ=∂T < 0), before it saturates
below T ≈ 2 K [Fig. 2(c)], similar to previous reports [40].
Despite this insulatinglike behavior, the large magneto-
resistivity is a feature of the metallic, compensated multi-
band system FeSe1−xSx [29,40,41]. Quantum oscillations
are visible for temperatures below ≈5 K [Fig. 2(e)],
demonstrating the existence of a Fermi surface and high-
lighting the high quality of the samples [27,42]. A two-
band analysis of the magnetoresistivity allows us to
extrapolate the zero-field resistivity from high magnetic
fields [31], which indicate Fermi liquid behavior below a
crossover temperature TFL ≈ 10 K, shown in Fig. 2(d)
[27,40]. The orbitally averaged effective masses from
quantum oscillations show nondivergent electronic corre-
lations in the vicinity of the nematic QCP, as discussed in
detail in Ref. [27], likely due to a coupling between the
nematic order parameter and the lattice [28,43–45].
Next, we use a prototypical power-law scaling ansatz to

describe the magnetoresistivity of FeSe0.89S0.11, previously
applied in thin-film materials, including dirty films of FeSe
[16–19,23–26]. In d dimensions, the scaling is given by

ρðH; TÞ=ρ⋆ ¼ Tð2−dÞ=zfðμ0jH −H⋆j=T1=zνÞ; ð1Þ

with fð0Þ ¼ 1 and the critical exponent zν [46]. Clearly,
a crossing of the magnetoresistivity isotherms at a finite ρ⋆
is only possible for a two-dimensional system. Indeed,
FeSe1−xSx have strongly two-dimensional electronic and
superconducting properties [27,29,47–50].
In the case of a typical QCP, zν is a constant given by

the appropriate universality class, which would lead to a
constant slope in Fig. 3(a) (see also the Supplemental
Material [31]). This is evidently not the case here where
we identify a power-law dependence of zνðTÞ ∼ Tα, with
nonuniversal exponents α ≈ −1.5 for sample B and
≈ − 1.0 for sample C, as shown in Fig. 3(b). Using this
extracted zνðTÞ, all magnetoresistivity data collapse onto a
single curve for both samples, reflecting the form of the
scaling function f, shown in Fig. 3(c). Deviations for this
scaling only occur for the superconducting transition at
lowest fields and temperatures, and at the highest temper-
atures and fields. These deviations indicate the limits of the
scaling relation, as shown in the SupplementalMaterial [31].
This scaling analysis reveals an interesting and unex-

pected feature. While a zero-temperature divergence of
the effective critical exponent zνðTÞ is a key signature
of quantum Griffiths phases, the power-law divergence

observed here is much stronger than the logarithmic diver-
gence (activated behavior) predicted within the infinite-
randomness criticality scenario [13,18,31], as shown in
Fig. 3(b). In fact, a power-law divergence of zνðTÞ is
incompatible with the presence of a typical QCP because

(a)

(c)

(d)

(b)

FIG. 3. (a) Log-log plot of the first derivative at the crossing
field H⋆ [refer to Fig. 2(e)]. Error bars are smaller than the
symbol size. The slope of the dashed line corresponds to 1=zνðTÞ.
(b) Temperature dependence of zν extracted from panel A
(crosses) and from the piecewise extraction shown in the
Supplemental Material (dots) [31]. Error bars indicate a 1σ
confidence interval. (c) Scaled magnetotransport data using zν ∼
T−1.5 (sample B) and zν ∼ T−0.95 (sample C). The superconduct-
ing transitions (SC) deviate from this scaling form. (d) The low-
field, low-temperature resistivity in the mixed state follows a
power-law form ρðH; TÞ ¼ ρðHÞTα. The inset shows a nearly
exponential decay of αðHÞ. For μ0H > 22 T the analysis
becomes unreliable, and for μ0H > 28 T, the exponent turns
negative. All reported data are measured at p ¼ 4.7 kbar.
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the temperature term T1=zνðTÞ in Eq. (1) remains finite for
T → 0, which implies the persistence of a nonzero energy
scale at lowest temperatures. Interestingly, we find that zν
deviates from the activated behavior dependence below T ≈
5–10 K which coincides with a reentrance of Fermi liquid
behavior, Fig. 2(b). This suggests a suppression of order
parameter fluctuations due to a finite coupling with the
lattice, or a dimensional crossover induced by a changing
Fermi surface topology [27,29,40,50].
We now focus on the nature of the underlying phases

separated by H⋆. Figure 3(d) shows that for fields smaller
than H⋆, the resistivity within the superconducting mixed
state follows a power-law form ρ ∝ TαðHÞ over almost one
decade in temperature. We attribute this power-law form to
a disordered vortex-liquid phase that freezes into a vortex
glass in the zero-temperature limit, as found in underdoped
cuprates [25]. Crossing over into the high-field regime
above H⋆ where quantum oscillations are present, the
temperature-dependence of the resistivity suggests co-
existing metallic and finite-range hopping channels, as
discussed in the Supplemental Material [31].
To elucidate the origin and extent of the low-field dis-

ordered vortex phase, we investigate the pressure depende-
nce of the superconducting to normal transitions in magnetic
fields on sample A (pc ≈ 5.8 kbar [27]). Figures 4(a)–4(f)
show the magnetoresistivity and its derivative up to 13.5 T
inside the nematic phase (0.9 kbar), close to the nematic
quantumphase transition (5.5 kbar) andwithin the tetragonal
phase (8.8 kbar). In the nematic and tetragonal phases, the
normal-to-superconducting transition widths are nearly tem-
perature and field independent. In contrast, a visible broad-
ening of the transition is found close to pc, but only for high
fields and at low temperatures, thus coinciding with the
vortex-liquid phase in sample B. To quantify this additional
broadening, we extract the superconducting offset and onset
critical fields, Hoff

c2 and Hon
c2, as shown in Figs. 4(d)–4(f).

Furthermore, we define a critical magnetic field HG
c2,

where the magnetoresistivity derivative has an additional
shoulder before it returns to its high-temperature normal
state background, which is observable only in the vicinity
of pc [Fig. 4(e)]. Figure 4(g) summarizes all extracted
critical fields and their zero-temperature extrapolations,
see also the Supplemental Material [31]. Interestingly, the
zero-temperature superconducting transition width peaks
at the nematic quantum phase transition, doubling the extent
of the superconducting mixed state. The width of theHG

c2ð0Þ
peak in pressure is estimated to be σp ≈ 0.7ð2Þ kbar, which
agrees well with an estimate for the pressure range of the
quantumGriffiths phase, as discussed below. Figure 4(g) also
shows that the zero-field superconducting transition does not
display any similar broadening. This demonstrates that the
peak inHG

c2 is a low-temperature and high-field effect, ruling
out effects of possible pressure inhomogeneities [31].
Discussion.—Quantum Griffiths phases were previously

detected in inhomogeneous superconductor-to-insulator
transitions in thin films, including FeSe [16–19,23–26].
Here, in bulk FeSe0.89S0.11, the situation is very different.
The scaling relation only describes the normal state
resistivity and holds for magnetic fields up to 45 T and
temperatures up to 30 K, vastly exceeding the bulk super-
conducting phase. We therefore propose that the quantum
Griffiths phase in FeSe0.89S0.11 emerges from the suppres-
sion of the nematic phase with pressure [27,39,51] and the
formation of rare nematic islands in a tetragonal matrix due
to the random distribution of sulfur atoms (Fig. 1), as
suggested before (see the Supplemental Material to
Ref. [5]). To demonstrate how this can lead to a quantum
Griffiths phase, we sample a random distribution of 11% S
atoms over a square lattice, and average the effective sulfur
density xðrÞ over the experimental quasiparticle mean-free
path length λ ≈ 350 Å [27], as shown in Figs. 1(b) and 1(c).

(g)(a)

(d)

(b) (c)

(e) (f)

FIG. 4. Evolution of superconductivity for sample A. (a)–(c) Magnetoresistivity and (d)–(f) the corresponding first derivatives
showing the development of the superconducting transition in magnetic fields for pressures across the nematic quantum phase transition.
(g) Three-dimensional H − p − T superconducting phase diagram. The inset shows the extrapolated critical fields, Hoff

c2 , H
on
c2, and HG

c2,
defined in panels (d)–(f), in the zero-temperature limit. The relative positions of samples B and C under a pressure of 4.7 kbar in the
phase diagram are indicated by dashed and dotted lines, respectively (see also Figs. 2 and 3). Error bars indicate a 1σ confidence interval.
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The intrinsic local variation ΔxðrÞ ≈ 0.4% (std. dev.) gives
rise to regions with higher (lower) S content which have a
locally lower (higher) critical pressure pcðrÞ. This is the
prototypical case of random-mass disorder that smears the
quantum phase transition over a region ΔpcðrÞ. By
comparing the reported nematic transition temperatures
from pressure and isoelectronic substitution studies, we
estimate ΔxðrÞ ∝ ΔpcðrÞ ≈ 0.4 kbar [29,39,40,52]. This
estimate is similar to the observed pressure range of a
broadened superconducting transition, σp ¼ 0.7ð2Þ kbar.
This suggests that the peak in HG

c2ð0Þ occurs either due to
enhanced superconducting fluctuations within the nematic
islands, and/or superconducting nematic islands below the
percolation threshold, which get suppressed at H⋆. These
effects could also provide a favorable environment for the
observed inhomogeneous superconducting vortex phase in
the vicinity of the nematic QCP. Finally, we note that the
spatial arrangement of the S atoms locally breaks the C4

symmetry of the lattice and thus introduces random-field
effects. In the two-dimensional regime, they may limit the
size of the nematic domains, but for weak disorder, the
corresponding breakup length is exponentially large [53].
It is rather surprising that FeSe0.89S0.11 appears as a clean

system where quantum oscillations can be observed at
lowest temperatures, and yet signatures of a quantum
Griffiths phase are detected as well. Thus, in the vicinity
of the electronic nematic quantum phase transition, addi-
tional effects must be considered, such as the nematoelastic
coupling that quenches the two-dimensional quantum
critical nematic fluctuations below a cross-over temperature
TFL ≈ 10 K. As a result, Fermi liquid behavior with finite
electronic correlations is restored [27,29,40,50], and the
quantum Griffiths phase is cut off, leading to the overly
strong divergence of zν. Additionally, a band with likely 3D
character is formed due to a Lifshitz transition of the Fermi
surface in the proximity of the nematic QCP [27,29] which
may change the effective dimensionality of the system at
low temperatures.
The observation of a quantum Griffiths phase in an iron-

based superconductor has a number of important implica-
tions and provides new insights into the nature of nematic
quantum phase transitions. Most notably, the power-law
behavior of zνðTÞ could provide new insights into the
dynamics of (quenched) nematic quantum fluctuations.
Moreover, our study provides evidence that the quantum
Griffiths phase affects the mixed state of the superconduct-
ing phase. Alternative systems to search for nematic
quantum Griffiths phases are those iron-based supercon-
ductors in which nematic and tetragonal phases form over
limited compositional ranges around QCPs [29,40,54,55].
Experimental probes include uniaxial strain to suppress
nematic fluctuations and hence to tune Griffiths phases
[56]; NMR and Raman studies to probe the essential role of
lattice disorder [57]; STM studies to follow the formation
of nematic islands [58]; specific heat measurements to

search for predicted power-law behavior at low temper-
atures [14,17,20,59]. Thus, we hope that our results will
guide further theoretical and experimental research in
understanding nematic quantum Griffiths phases.
In accordance with the EPSRC policy framework on

research data, access to the data will be made available
from Ref. [60].
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