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The transverse velocity time correlation function C̃Tðk;ωÞ with k and ω being the wave number and the
frequency, respectively, is a fundamental quantity in determining the transverse mechanical and transport
properties of materials. In ordinary liquids, a nonzero value of C̃Tðk; 0Þ is inevitably linked to viscous
material flows. Even in solids where significant material flows are precluded due to almost frozen
positional degrees of freedom, our molecular dynamics simulations reveal that C̃Tðk; 0Þ takes a nonzero
value, whereby the time integration of the velocity field shows definite diffusive behavior with diffusivity
C̃Tðk; 0Þ=3. This behavior is attributed to viscous transport accompanying a small random convection of
the velocity field (the inertia effect), and the resultant viscosity is measurable in the Eulerian description:
the constituent particles that substantially carry momenta fluctuate slightly around their reference positions.
In the Eulerian description, the velocity field is explicitly associated with such fluctuating instantaneous
particle positions, whereas in the Lagrangian description, this is not the case. The present study poses a
fundamental problem for continuum mechanics: reconciling liquid and solid descriptions in the limit of the
infinite structural relaxation time.
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Viscosity is one of the most fundamental transport
properties of liquids [1]. In elastic solids, although the
importance of viscosity has frequently been considered [2],
we still do not fully understand its role and mechanism.
In solids, as with liquids, the velocity (momentum) fields
are generally regarded as “gross variables,” for which
dissipation channels are expected as opposed to the energy
injection due to thermal fluctuations. In particular, for the
transverse velocity field, the only possible dissipation
channel is expected to be the shear viscosity.
A clue to this problem can be obtained by examining the

velocity time correlation function (VTCF): according to the
generalized hydrodynamics [3–5], the transverse VTCF in
the wave number (k) and frequency (ω) space, C̃Tðk;ωÞ, is
related to the k-dependent shear viscosity ηðkÞ as

lim
ω→0

C̃Tðk;ωÞ ≅
2T

k2ηðkÞ ; ð1Þ

where T is the temperature measured in units of
Boltzmann’s constant. For details of this relationship,
please refer to the literature [3–5] and Supplemental
Material (SM) [6]. C̃Tðk; 0Þ has the same dimension as a
diffusion constant (in the k space); roughly speaking,
random generation of a net flow and its viscous dissipation
occur repeatedly, and long-term accumulation of such
processes manifests as diffusion. In a three-dimensional
ordinary liquid, where ηðkÞ is nearly constant, the viscous
dissipation is accompanied by material flows with

C̃Tðk;0Þ=3 being a (transient) flow-diffusion constant [7].
For the corresponding real-space picture, see SM [6].
In solids, it is known that C̃Tðk;ωÞ at relatively high ω

captures the acoustic damping properties and can be
described by a simple damped harmonic oscillator model
[2], harmonic continuum elasticity with a small viscosity
(hereafter, we refer to this as the background viscosity). On
the other hand, the properties of C̃Tðk;ωÞ at rather low ω
have not been seriously examined thus far. As noting that
the viscosity controlling acoustic damping in viscoelastic
materials is frequently inconsistent with the terminal
(ω ¼ 0) viscosity [8], it is questionable whether the back-
ground viscosity can capture the whole aspect of the
viscous transport of solid states.
In this study, we reveal a novel transverse viscous

dissipation mechanism of solid states, which is different
from that determined by the background viscosity, by
examining the low ω limit behavior of C̃Tðk;ωÞ and its
associated diffusion for model solids. We know that signifi-
cant material diffusion can never occur due to the almost
frozen positional degrees of freedom. Contrary to this
common belief, we find “transverse diffusion,” but it is
different from the usual material diffusion: the corresponding
variables are the time integration of the (Eulerian) velocity
fields, which are often identified as the true displacement
fields, but this is not the case. As demonstrated below, this
diffusion is attributed to the existence of a finite terminal
viscosity [namely, C̃Tðk; 0Þ ≠ 0] specific to solid states. For
this purpose, by using soft core potentials [11,12], we
perform classical molecular dynamics simulations [13] of
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two types of solids: amorphous (glass) and face-centered
cubic (FCC) crystalline solids. The details of the simulations
and the models are presented in SM [6].
First, in Fig. 1, we show the k-dependent shear viscosity

ηðkÞ [3–5], which is formally calculated [see Eq. (S5) in
SM [6] ] for both glass and crystal states, and ηðkÞ is found
to exhibit a strong k dependence. As mentioned above, a
finite value of ηðkÞ immediately indicates the existence of
some kind of diffusive process. To see what diffuses and to
clarify the physical significance, we first investigate the
correlation of the following two types of “displacement”
fields for a time duration of Δt: (i) one is the displacement
field for specific positions of particles defined as

ûkðΔtÞ ¼
1
ffiffiffiffi

N
p

X

N

j¼1

Z

Δt

0

dt0vjðt0Þe−ik·r
�
j ; ð2Þ

where N is the total number of particles and k is the wave
vector. Here, rjðtÞ and vjðtÞ are the position and velocity of
the jth particle at time t, respectively. The corresponding
real-space representation is ûðr;ΔtÞ ¼ R

Δt
0 dtv̂ðr; tÞ, with

v̂ðr; tÞ ¼ P

N
j¼1 vjðtÞδðr − r�jÞ. Note that the Fourier trans-

form of an arbitrary function AðrÞ is defined by Ak ¼
R

dre−k·rAðrÞ. In the following, we set the reference
positions fr�jg for the particle positions at t ¼ 0, frjð0Þg
[14]. Otherwise, we may use the time-averaged [15] or
inherent-state or equilibrium positions as fr�jg instead of
frjð0Þg. (ii) The second type of the displacement field may
be defined as the time integration of the velocity field:

ukðΔtÞ ¼
1
ffiffiffiffi

N
p

X

N

j¼1

Z

Δt

0

dtvjðtÞe−ik·rjðtÞ; ð3Þ

whose real-space representation is given by uðr;ΔtÞ ¼
R

Δt
0 dtvðr; tÞ with vðr; tÞ ¼ P

N
j¼1 vjðtÞδ½r − rjðtÞ� being a

microscopic expression of the velocity field [4,5].
These two kinds of displacement fields, Eqs. (2) and (3),

are apparently similar to each other, but their transverse
parts show completely different behaviors (for the longi-
tudinal components, see SM [6]). In Fig. 2, we show

hjû⊥k ðΔtÞj2i and hju⊥k ðΔtÞj2i for various Δt. Hereafter,
½� � ��⊥ and h� � �i denote taking the transverse part and an
ensemble average, respectively. For Δt ≫ ts, where ts is
the time for the transverse sound to propagate across the
length of the system, ikû⊥k þ ðikû⊥k Þ† can be approximately
regarded as a thermally fluctuating elastic shear strain.
Therefore, for such Δt [16,17],

hjû⊥k ðΔtÞj2i ≅
2T

k2GðkÞ ; ð4Þ

where GðkÞ is the k-dependent shear elastic modulus. For
smaller k,GðkÞ approaches itsmacroscopic valueG, resulting
in a k−2 dependence of hjû⊥k ðΔtÞj2i [14,15,18–21]. On the
other hand, hju⊥k ðΔtÞj2i behaves in a completely different
way. Although for smaller Δt and k, hju⊥k ðΔtÞj2i behaves
similarly to hjû⊥k ðΔtÞj2i, with increasing Δt, the difference
between hjû⊥k ðΔtÞj2i and hju⊥k ðΔtÞj2i becomes more pro-
nounced at larger k. hju⊥k ðΔtÞj2i can be generally related to
the VTCF as hju⊥k ðΔtÞj2i ¼

R

Δt
0 ds

R

Δt
0 ds0hv⊥k ðsÞ · v⊥−kðs0Þi.

For a sufficiently large Δt, ð1=3Þ RΔt
0 dthv⊥k ðtÞ · v⊥−kð0Þi ≅

ð1=3Þ R∞
0 dthv⊥k ðtÞ · v⊥−kð0Þi ¼ C̃ðk; 0Þ=3 is the diffusivity of

u⊥k ðΔtÞ, and hju⊥k ðΔtÞj2i follows [7]

hju⊥k ðΔtÞj2i ≅ 2C̃Tðk; 0ÞΔt ≅ Δt
4T

k2ηðkÞ ; ð5Þ

where Eq. (1) is used. Figure 2 shows that Eq. (5) agrees with
the simulation results.
This qualitative difference may be surprising because the

two definitions ûkðΔtÞ and ukðΔtÞ have frequently been
thought to be physically equivalent as long as particles
remain around their reference positions. However, as is

FIG. 1. The k-dependent shear viscosity ηðkÞ for the glass and
(FCC) crystal states: ηðkÞ ∼ kc, where the exponent c is close to
−3, which agrees with Eq. (13). For the models, see SM [6].

(a) (b)

FIG. 2. hjû⊥k ðΔtÞj2i and hju⊥k ðΔtÞj2i for glass (a) and crystal
(b) states at various Δtω0. Here, ω0 is the average frequency of
the thermal vibration of a constituent particle defined as ω2

0 ¼
ð1=NÞPj 3T=ðmjhδr2jiÞ with mj and hδr2ji being the mass and
the mean square amplitude of the vibration of the jth particle,
respectively. Although hjû⊥k ðΔtÞj2i collapses on a single line
(∝ k−2) for Δtω0 ≳ 40, hju⊥k ðΔtÞj2i grows with Δt. The solid line
indicates Eq. (5).
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clearly shown in Fig. 2, this is not the case. ûkðΔtÞ
represents the collective vibrational fluctuations, while
ukðΔtÞ undergoes diffusive behavior controlled by ηðkÞ.
In real space, ûðr;ΔtÞ represents the displacement mea-
sured from the reference positions, but uðr;ΔtÞ does not
[22]. That is, uðr;ΔtÞ represents a total velocity flow
passing the position r for Δt. The particle positions at
which the velocities (momenta) are assigned rapidly
fluctuate due to random scattering among the surrounding
particles. Such randomness in the positional degrees of
freedom is explicitly incorporated into vkðtÞ but not into
v̂kðtÞ. This random convection in vkðtÞ causes a qualitative
difference between ukðtÞ and ûkðtÞ. For solids, one may
consider that vkðtÞ follows a damped oscillator model, for
which C̃Tðk; 0Þ ¼ 0 [4], namely, the total passing flow is
zero. Contrary to this seemingly reasonable conclusion, the
total transverse flow is not zero, and its variance shows a
cumulative increase in Δt.
The physical significance of this different behavior

between ukðΔtÞ and ûkðΔtÞ can be complementarily
understood by real-space analysis. For this purpose, we
assume a hypothetical cubic box Vl of linear dimension l
in a system and define two types of quantities: ÛlðΔtÞ ¼
RΔt
0 dt0V̂lðt0Þ and UlðΔtÞ ¼

RΔt
0 dt0Vlðt0Þ, with V̂lðtÞ and

VlðtÞ being the box-averaged velocities given as

V̂lðtÞ ¼
1

Nlð0Þ
Z

Vl

drv̂ðr; tÞ ¼ 1

Nlð0Þ
X

frjð0Þg∈Vl

vjðtÞ; ð6Þ

and

VlðtÞ ¼
1

NlðtÞ
Z

Vl

drvðr; tÞ ¼ 1

NlðtÞ
X

frjðtÞg∈Vl

vjðtÞ; ð7Þ

whereNlðtÞð∼ρldÞ is the number of particles in the box Vl
at time t, ρ is the number density, and d is the spatial
dimensionality (here, d ¼ 3). ÛlðΔtÞ is the average
displacement of particles assigned to Vl at t ¼ 0. On the
other hand, similar to uðr;ΔtÞ, UlðΔtÞ is interpreted as the
total flow passing the “box” during the period ½0;Δt�.
Accordingly, Vl approximately represents Lagrangian and
Eulerian volumes in Eqs. (6) and (7), respectively. In Fig. 3,
we plot hjÛlðΔtÞj2i and hjUlðΔtÞj2i for a glass as a
function of l at various Δt. Although the behavior of
hjÛlðΔtÞj2i ∝ l−1.3, which reflects the elasticity [23],
remains unchanged, hjUlðΔtÞj2i grows linearly with Δt for
smaller l.
We emphasize that random ingress and egress of

particles (and their momenta) through the box boundaries
are explicitly considered only in VlðtÞ due to the definition
of vðr; tÞ. Below, we argue how this effect produces the
diffusive behavior of UlðΔtÞ and is involved in irreversible
momentum transfer. Concerning the diffusivity of UlðΔtÞ,
the particles, frjðtÞg ∈ Vl, are categorized into two groups:

(A) the particles that are always inside Vl and (B) the
particles that randomly vibrate across the box boundaries.
Almost recursive trajectories of the (A) particles do not
contribute to the diffusive behavior. On the other hand,
for the (B) particles, only the trajectories inside Vl are
counted, and their random accumulation contributes to the
diffusive behaviors of UlðΔtÞ. This situation is schemati-
cally shown in Fig. 4. The diffusion coefficient of UlðΔtÞ,
Dl, is given as

Dl ∼
a3ω0

ρldþ1
; ð8Þ

FIG. 3. hjÛlðΔtÞj2i and hjUlðΔtÞj2i as a function of l in a
glass for ω0Δt ¼ 74, 3.7 × 102, 1.5 × 103, and 3.7 × 104 (see the
caption of Fig. 2 for the definition of ω0). hjÛlðΔtÞj2i collapses
onto a single line (∝ l−1.3). On the other hand, at smaller l,
hjUlðΔtÞj2i linearly grows in Δt.

FIG. 4. Schematic of the concept of the diffusive behavior of
UlðΔtÞ. (B) particles (tagged in red), which randomly vibrate
across the boundary of Vl, carry their momenta out of Vl. They
are subsequently scattered by other particles and then return to Vl
with different momenta. Such crossing events accompanied by
momentum exchanges occur repeatedly with a particle vibration
period (∼1=ω0). The crossing direction is somewhat arbitrary due
to the randomness in the rotational direction of the particle
motion with respect to the reference position [24]. There arises a
net flow passing inside Vl, and the long-term accumulation of the
momentum exchanges manifests as the diffusion of UlðΔtÞ, as
shown in Fig. 3. For this behavior, it is essential that the particle
velocities and its time integration (trajectories) inside and outside
Vl fixed in space are distinguished. This is the case in the
Eulerian description. If the flows and the trajectories outside Vl
(dashed lines) are also considered, diffusive behaviors are absent
[also shown for ÛlðΔtÞ in Fig. 3]. This corresponds to the
Lagrangian description, in which Vl is supposed to be fixed to
matter instead of to space.
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where ω0 and a are the mean frequency and amplitude of
the vibration of particles, respectively. A detailed derivation
is provided in SM [6]. Equation (8) is consistent with the
numerical result for a glass, as shown in Fig. 3(a), for which
a ∼ 0.1 and ω0 ∼ 4 at T ¼ 0.08 and ρ ¼ 0.8, Eq. (8) gives
Dl ∼ 10−2l−4 (see the caption of Fig. 2 for ω0).
Let us consider the relationship between the diffusivity

of UlðΔtÞ and the momentum transfer. The diffusion
coefficient Dl is expressed in terms of the time integral
of the autocorrelation of VlðtÞ as [7]

Dl ¼ 1

3

Z

∞

0

dthVlðtÞ · Vlð0Þi: ð9Þ

Then, we evaluateDl using the following conditions. (i) As
mentioned above, only the (B) particles contribute to Dl.
We accordingly decompose VlðtÞ into two parts: VlðtÞ ¼
VðAÞ

l ðtÞ þ VðBÞ
l ðtÞ. For VðAÞ

l ðtÞ and VðBÞ
l ðtÞ, the summation

in Eq. (7) is restricted to the (A) and (B) particles,
respectively. (ii) As a (B) particle (number j) moves from
the inside to the outside of Vl, its velocity is transferred
to the outer region. Simultaneously, vjðtÞ is deleted

from VlðtÞ [and thus from VðBÞ
l ðtÞ]. This direct momentum

loss occurs for approximately the particle-vibration period

(∼1=ω0), resulting in a rapid decay of hVðBÞ
l ðtÞ · VðBÞ

l ð0Þi,
namely, hVðBÞ

l ð1=ω0Þ · VðBÞ
l ð0Þi ≅ 0. With these two con-

ditions, (i) and (ii), in the integral of Eq. (9) hVlðtÞ · Vlð0Þi
is replaced by hVðBÞ

l ðtÞ · VðBÞ
l ð0Þi with the infinite upper

limit being replaced by 1=ω0:

Dl ≅
1

3

Z

1=ω0

0

dthVðBÞ
l ðtÞ · VðBÞ

l ð0Þi ∼ hjVðBÞ
l ð0Þj2i
ω0

: ð10Þ

Here, hjVðBÞ
l ð0Þj2i is evaluated as follows. We set VðBÞ

l ð0Þ ¼
½1=Nlð0Þ�

P0
frjð0Þg∈Vl

vjð0Þ with the dash denoting that
the summation is restricted to the (B) particles. Because
they are located around the boundary surface region of
width ∼a, the number of such particles is approximated

as ρald−1, while Nl ∼ ρld. Therefore, hjVðBÞ
l ð0Þj2i ¼

½1=Nlð0Þ2�
P0

frjð0Þg∈Vl
hjvjð0Þj2i ∼ ð1=ρ2l2dÞ × ρald−1×

ðT=mÞ ∼ a3ω2
0=ðρldþ1Þ, where we make use of the equi-

partition theorem, hvjð0Þvj0 ð0Þi ¼ ð3T=mÞδjj0 ∼ a2ω2
0δjj0 .

We subsequently obtain Dl ∼ ða3ω0=ρldþ1Þ, which is
consistent with Eq. (8).
Equation (10) is interpreted as a consequence of random

momentum exchanges between Vl and the outer region,
namely, the repeated occurrence of the random injection
and ejection of momenta through the boundaries. As in
usual Brownian motion, the consecutive accumulation
of such a random momentum exchange results in a
“diffusive” motion of Ul. Notably, this Brownian motion
does not apply to the material-element displacement itself.

In contrast, for V̂lðtÞ defined in the Lagrangian volume, the
ingress and egress of particles and their momenta are not
considered. Thus, the rapid and direct momentum loss
through the boundaries is absent; for V̂lðtÞ, the (B)
particles for VlðtÞ are absent. This difference in the
definition of the box-averaged velocity causes different
behavior between hjUlðΔtÞj2i and hjÛlðΔtÞj2i.
Such momentum exchanges can be formally described

using the friction coefficient or viscosity [7]. The time
evolution of the momentum defined in the Eulerian
volume by JlðtÞ ¼ ½1=NlðtÞ�

P

frjðtÞg∈Vl
mjvjðtÞ ¼

½1=NlðtÞ�
R

Vl
drjðr; tÞ, where jðr; tÞ is the momentum field,

can be formally expressed in the generalized Langevin
equation as

d
dt

JlðtÞ ¼ −
Z

t

−∞
dt0ζlðt − t0ÞJlðt0Þ þΘlðtÞ; ð11Þ

where ζlðtÞ is the memory kernel and ΘlðtÞ is the noise
term. Here, defining the correlation function HlðtÞ ¼
hJlðtÞ · Jlð0Þi, we obtain ðd=dtÞHlðtÞ ¼ −

R

t
−∞ dt0ζlðt−

t0ÞHlðt0Þ, using the relation hΘlðtÞ · Jlð0Þi ¼ 0. In the
frequency (ω) space, we obtain

ζ̃lðωÞ ¼
−iωH̃lðωÞ þHlð0Þ

H̃lðωÞ
; ð12Þ

where ζ̃lðωÞ ¼
R∞
0 dte−iωtζlðtÞ and H̃lðωÞ ¼

R∞
0 dte−iωtHlðtÞ. In ω → 0, Eq. (12) gives ζ̃lð0Þ¼
Hlð0Þ=H̃lðω¼0Þ∼T=MlDl, Here, Hlð0Þ¼hjJlð0Þj2i∼
TMl from the equipartition theorem and H̃lðω ¼ 0Þ ¼
R

∞
0 dtHlðtÞ ≅ M2

l

R

∞
0 dthVlðtÞ · Vlð0Þi ∼DlM2

l from
Eq. (9), with Ml being the averaged mass of the box Vl.
Equation (11) describes the “Brownian” motion of UlðΔtÞ,
for which ζ̃lð0ÞMl is the friction coefficient of the long-
time-scale dynamics. For d ¼ 3, by expressing ζ̃lð0ÞMl in
terms of Stokes friction as ζ̃lð0ÞMl ∼ ηll, we obtain the
length-scale-dependent shear viscosity ηl as

ηl ∼
T

lDl
∼

ρT
a3ω0

l3: ð13Þ

Note that the corresponding representation ofDl ∼ T=ðηllÞ
is C̃Tðk;ωÞ ≅ 2T=½k2ηðkÞ�, Eq. (1), in the k space. For
k ∼ 2π=l, the k-dependent shear viscosity ηðkÞ is of the
form, ηðkÞ ∼ ηl∼2π=k ∼ ρT=a3ω0k3, which is consistent with
the numerical results shown in Fig. 1. This length-scale
dependence of the viscosity does not originate from struc-
tural heterogeneities (e.g., defects or soft spots). In solids,
the constituent particles that substantially carry momenta
slightly fluctuate around their reference positions. The
accompanying small random convection of the velo-
city in the transverse direction induces irreversible
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momentum exchanges among neighboring regions.
Therefore, we may say that the viscosity studied here is
the renormalized viscosity accounting for the inertia effect,
and is different from the bare background viscosity [2,25].
In summary, we have argued a novel transverse viscous

transport in solid states that was not previously recognized.
In the literature concerning the transverse mechanical and
transport properties in solids, the dynamic structure factor
S̃Tðk;ωÞ ≅ ðρ2mk2=πω2ÞReC̃Tðk;ωÞ is frequently analyzed
instead of C̃Tðk;ωÞ. Here, ρm is the average mass density.
In molecular dynamics simulations, S̃Tðk;ωÞ shows three
peaks: two symmetric Brillouin peaks and one central peak.
The Brillouin peaks can be well captured by a simple
damped harmonic oscillator model [2,4] with the back-
ground viscosity (see, for example, Refs. [26,27]). Because
the main focus of past studies has been placed on acoustic
propagation properties, the central peak has received less
attention and has been implicitly assumed to be attributable
to pure elasticity. However, in our perspective, the central
peak should reflect a nontrivial shear viscosity, which is
asymptotically expressed as S̃Tðk;ωÞ ¼ 2ρ2mT=½πω2ηðkÞ�.
Before closing, we present the following remarks. The

transverse diffusion associated with the terminal viscosity
is observed only in the Eulerian description. In the
Lagrangian description, there is no diffusive behavior,
indicating that C̃Tðk; 0Þ ¼ 0. Because ηðkÞ is associated
with C̃Tðk; 0Þ through Eq. (1), ηðkÞ should be absent in the
Lagrangian description. As the solid dynamics are com-
monly described in the Lagrangian description instead of
in the Eulerian description, one may consider that the
viscosity studied here is merely conceptual. However, in
supercooled liquids, where the Eulerian description is
generally supposed, such viscous transport is also revealed
[9,28–31]. Supercooled liquids exhibit both liquidlike and
solidlike mechanical properties depending on the timescale
[32,33]. At timescales smaller than the structural relaxation
time τα, a system is regarded as a solid, whereas the viscous
response is dominant in the transverse modes for a
significant range of k [9]. The resultant terminal viscosity
ηðkÞ exhibits a marked k dependence similar to those
shown in Fig. 1 at mesoscopic length scales [9,28–31].
At larger length scales, ηðkÞ approaches the macroscopic
viscosity (∝ τα), while at microscopic scales, ηðkÞ is close
to the background viscosity. In the limit of τα → ∞, ηðkÞ in
liquid states is continuously connected to that in solid states
with ηðk ¼ 0Þ ¼ ∞ in the Eulerian description, which is
not consistent with the transverse dynamics of solids in the
Lagrangian description. In the Lagrangian description, the
material displacements measured from the reference posi-
tions are the basic observables, while in the Eulerian
description, they are the velocities passing arbitrary points.
This difference may illuminate different aspects of an
identical phenomenon in materials: the viscous response
of the irreversible momentum flows in the Eulerian
description and the elastic response of the reversible

deformations in the Lagrangian description. They can be
translated to each other in principle, but it is almost
impossible in general. The present results may pose a
fundamental problem for continuum mechanics: how to
reconcile liquid and solid descriptions in τα → ∞. We will
investigate these issues further elsewhere.
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